GPLUS EDUCATION

_	GPLUS EDUCATION
Dat Tin	
Mai	SOLUTIONS
	Single Correct Answer Type
1.	Equimolar solution in the same solvent have
	a) Different boiling and different freezing points b) Same boiling and same freezing points c) Same freezing points c) Same boiling and same freezing points
2.	c) Same freezing point but different boiling point d) Same boiling point but different freezing point Temperature coefficient is the variation in the :
۵.	Distribution coefficient Concentration of Concentration of Distribution coefficient
	a) for 1° rise in the b) solution for 10° rise in c) solution for 1° rise in d) for 10° rise in the
	temperature the temperature the temperature temperature
3.	What is the molarity of H_2SO_4 solution if 25 mL is exactly neutralised with 32.63 mL of 0.164 M NaOH?
	a) 0.107 M b) 0.126 M c) 0.214 M d) -0.428 M
4.	Which of the following solution in water possesses the lowest vapour pressure?
5.	a) 0.1 (N) BaCl ₂ b) 0.1 (M)NaCl c) 0.1 (M) KCl d) None of these Which of the following is incorrect?
J.	a) 0.1 m sucrose b) 0.1 m urea c) 0.1 m ethanol d) 0.1 m glucose
6.	Which method cannot be used to find out the molecular weight of non-volatile solute?
	a) Victor Meyer's method
	b) Osmotic pressure method
	c) Cryoscopic method
	d) Ebullioscopic method
7.	At a suitable pressure near the freezing point of ice, there exists :
	a) Only ice
	b) Ice and water c) Ice and vapour
	d) Ice, water and vapours, all existing side by side
8.	The vapour pressure of two pure liquid (A) and (B) are 100 torr and 80 torr respectively. The total
	pressure of solution obtained by mixing 2 mole of (<i>A</i>) and 3 mole of (<i>B</i>) would be :
	a) 120 torr b) 36 torr c) 88 torr d) 180 torr
9.	Which statement is not correct if two immiscible liquids of mol. wt. A and B respectively are mixed in
	equal amount to have a mixture?
	a) $\frac{P'_A}{P'_B} = \frac{m_B}{m_A}$
	b) The liquid having high mol. wt. will show lower values of P'
	c) $P_M = P_A^0(X_A)_l + P_B^0(X_B)_l$
	$d) P_M = P'_A + P'_B$
10.	Density of a 2.05 M solution of acetic acid in water is 1.02 g/mL. The molality of the solution is
	a) 23.077% b) 230.77% c) 2.3077% d) 0.23077%
11.	The values of observed and calculated molecular weights of calcium nitrate are respectively 65.6 and 164.
	The degree of dissociation of calcium nitrate will be :
	a) 25% b) 50% c) 75% d) 60%
12.	The molar freezing point constant for water is $1.86^{\circ}C/\text{mol}$. If 342 g of cane sugar $(C_{12}H_{22}O_{11})$ is
	dissolved in 1000 g of water, the solution will freeze at
12	a) -1.86° C b) 1.86° C c) -3.92° C d) 2.42° C An 1% solution of KCl (I), NaCl (II), BaCl ₂ (III) and urea (IV) have their osmotic pressure at the same
10.	In 170 solution of No. (1), Naoi (11), Daoi 2 (111) and the a (11) have their ositione pressure at the same

	temperature in the ascending order (molar masses 208.4 and 60 g mol ⁻¹). Assume 100% ionisation of		
	a) I< III< II< IV b) III< I < II < IV	c) I <ii <iii="" <iv<="" td=""><td>d) III< IV< I <ii< td=""></ii<></td></ii>	d) III< IV< I <ii< td=""></ii<>
14	Which has the highest freezing point at one atmosp		.,
11.			d) 0.1 M FeCl ₃ solution
1 5		_	d) 0.1 M reci ₃ solution
15.			D 660F
	a) 6.625 g b) 66.25 g	c) 662.5 g	d) 6625 g
16.	Solution A contains 7 g/L of $MgCl_2$ and solution B	contains 7 g/L of NaCl. At i	room temperature, the
	osmotic pressure of		
	a) 50 b) 180	c) 102	d) 25
17.	. Two liquids X and Y form an ideal solution at 300K	, vapour pressure of the solu	ition containing 1 mol of X
	and 3, mol of Y is 550 mmHg. At the same temperary	ture, if 1 mol of Y is further a	added to this solution,
	vapour pressure of the solution increases by 10 mi	nHg. Vapour pressure (in m	mHg)of X and Y in their pure
	states will be, respectively		
	a) 200 and 300 b) 300 and 400	c) 400 and 600	d) 500 and 600
18.	The freezing point of aqueous solution that contain	ns 5% by mass urea, 1.0% by	mass KCl and 10% by mass
	of glucose is: $(K_f H_2 O = 1.86 \text{ K molality}^{-1})$		•
	a) 290.2 K b) 285.5 K	c) 269.93 K	d) 250 K
19.			•
	vapour pressure 990 torr. The molecular weight of	_	notate in bolo g benzene nas
	a) 78.2 b) 178.2	c) 206.2	d) 220
20.		•	
20.			
	information will be (molecular weight of $CuCl_2 = 2$		
24	a) 0.16 b) 0.05	c) 0.1	d) 0.2
21.	A 0.0020 m aqueous solution of an ionic compound		
	moles of ions which 1 mol of ionic compound	produces on being dissolve	ed in water will be : $(K_f =$
	+1.86°C/m) a) 1 b) 2	CATION	
			d) 4
22.	The relative lowering of vapour pressure produce	= =	ubstance in 1000 g of water
	is 0.00713. The molecular weight of the substance		
	a) 180 b) 18.0	c) 342	d) 60
23.	$6.02 imes 10^{20}$ molecules of urea are present in 100 m	L of its solution. The concen	tration of urea solution is
	a) 0.1 M b) 0.01 M	c) 0.001 M	d) 0.02 M
24.	The number of moles of a solute in its solution is 2	0 and total number of moles	are 80. The mole fraction of
	solute is		
	a) 0.25 b) 0.50	c) 1.00	d) 1.25
25.	On shaking 10 mL of 0.1 molar solution of an	organic compound in war	ter with 10 mL of CCl ₄ til
	equilibrium is attained, concentration of the organ	ic compound in water would	l be $(K = 9)$ in molar units :
	a) 0.01 b) 0.09	c) 0.001	d) 0.009
26.	Equimolar solutions of two non-electrolytes in the	same solvent should have :	
	a) Same b. p but different f. p		
	b) Same f. p. but different b. p.		
	c) Same b. p. and same f. p.		
	d) Different b. p. and different f. p.		
27.	A solution of sulphuric acid in water exhibits :		
	a) Negative deviations from Raoult's law		
	b) Positive deviations from Raoult's law		
	c) Ideal properties		
	d) The applicability of Henry's law		

28.	The vapour pressure of w	vater depends upon :			
	a) Surface area of container				
	b) Volume of container				
	c) Temperature				
	d) All of these				
29	-	n (α) of a weak electrolyte	, $A_x B_y$ is related to van't H	off factor (i) by the	
271	expression	ir (a) or a weak electrolyte	, may is related to vali the	on ractor (i) by the	
	•	i-1	x+v-1	x+y+1	
	a) $\alpha = \frac{1}{(x+y-1)}$	b) $\alpha = \frac{i-1}{x+y+1}$	c) $\alpha = \frac{1}{i-1}$	d) $\alpha = \frac{x+y+1}{i-1}$	
30.	The substances whose so	lubility decreases with incr	rease in temperature :		
	a) $Ca(OH)_2$	b) Na ₂ CO ₃	c) Na ₂ SO ₄	d) All of these	
31.	25 mL of a solution of bar	ium hydroxide on titration	with 0.1 molar solution of	hydrochloric acid gave a	
	titre value of 35 mL. The	molarity of barium hydroxi	ide solution was		
	a) ppm	b) Mg/100 cc	c) g/L	d) g/100 cc	
32.	1.0 g of a non-electrolyte	e solute (molar mass 250	g mol ⁻¹) was dissolved	in 51.2 g of benzene. If the	
	freezing point depression	constant of benzene is 5.1	2 K kg mol ⁻¹ , the lowering	in freezing point will be :	
	a) 0.5 K	b) 0.2 K	c) 0.4 K	d) 0.3 K	
33.	The mole fraction of the s	olute in one modal aqueou	s solution is		
	a) 0.018	b) 0.027	c) 0.036	d) 0.048	
34.	The osmatic pressure of a	5% (wt./vol) solution of c	ane sugar at 150°C is		
	a) 3.078 atm	b) 4.078 atm	c) 5.078 atm	d) 2.45 atm	
35.	Conc H ₂ SO ₄ has a density	of 1.98 g/mL and is 98% I	$ m H_2SO_4$ by weight. Its norma	lity is	
	a) 19.6 N	b) 29.6 N	c) 39.6 N	d) 49.6 N	
36.	After adding a solute free:	zing point of solution decre	eases to -0.186. Calculate Δ	$\Delta T_b \ if \ k_f = 1.86 \ \text{and} \ k_b = 1.86$	
	0.512				
	a) 0.512	b) 0.0512	c) 1.86	d) 0.0186	
37.	The freezing point (in °C)	of a solution containing 0	$1 \text{ g of } K_3[Fe(CN)_6] \text{ (mol.w.}$	rt.329) in 100 g of water is:	
	a) -2.3×10^{-2}	b) -5.7×10^{-2}	c) -5.7×10^{-3}	d) -1.2×10^{-2}	
38.				92.64 and 170 respectively.	
	The degree of dissociation		Ü	1	
	a) 60%		c) 46.7%	d) 60.23%	
39.		*	vapour pressure of 290 mm		
	pressure of propyl alcohol is 200 mm. If the mole fraction of ethyl alcohol is 0.6, its vapour pressure (in				
	mm) at the same tempera	ature will be	-		
	a) 350	b) 300	c) 700	d) 360	
40.				ions is represented by the	
	equation. $P = 119 X_A + 135$; where X_A is mole-fraction of methyl alcohol, then the value of $\lim_{X_A \to 1} \frac{P_A}{X_A}$ is:				
	a) 254 torr	b) 135 torr	c) 119 torr	d) 140 torr	
41.	Observe the following ab				
	π_{obs} = observed colligati		11 1		
		tive property assuming no	ormal behaviour of		
	solute.	1			
	Van't Hoff factors (i) is given	ven by		π ,	
	a) $i = \pi_{obs} \times \pi_{cal}$	b) $i = \pi_{obs} + \pi_{cal}$	c) $i = \pi_{obs} - \pi_{cal}$	$d) i = \frac{\pi_{obs}}{\pi_{cal}}$	
42	Normality of 2 M $H_2 SO_4$			$^{\prime\prime}cal$	
14.	a) 2 N	b) 4 N	. <i>N</i>	N	
	u, 2 11	<i>O</i>) 111	c) $\frac{N}{2}$	d) $\frac{N}{4}$	

40	20 (1)	(1	1. 1. 1. 500 C . m	
43.				he depression in freezing point
		·	he degree of ionisation of the ϵ	
11	a) 0%	b) 100%	c) 75%	d) 50%
44.	Molarity of 0.2 N H_2 SO_4	b) 0.4	c) 0.6	d) 0.1
45.	a) 0.2	,	n law will not hold true is :	a) 0.1
43.	a) Temperature is consta		ii iaw wiii not noid ti de is .	
	b) The molecular state of		ue in hoth solvents	
	•		e mutual solubility of the two s	solvents
	d) None of the above			
46.		ssociated with isoton	ic solutions is not correct?	
	a) They will have the sar			
	b) They will have the sar	ne vapour pressure		
	c) They have same weigh	nt concentrations		
	d) Osmosis does not take	e place when the two	solutions are separated by a se	emipermeable membrane
47.	The distribution law hole	-		
			ystems c) Both (a) and (b)	d) None of these
48.	The energy that favours	dissolution of a solute	e in water is known as :	
	a) Hydration energy			
	b) Lattice energy			
	c) Ionization energy			
4.0	d) Exothermic energy Which is correct about H	longu'e law?		
47.			on between the gas and liquid	
	b) The gas in contact wit		- Later	
	c) The pressure applied	_	shave as an racar gas	
	d) All of the above		LICATION	
50.	-	ezing point in a soluti	on the following are in equilib	orium :
	a) Liquid solvent, solid s			
	b) Liquid solvent, solid s	olute		
	c) Liquid solute, solid so	lute		
	d) Liquid solute, solid so			
51.				25°C are 200 mm Hg and 41.5
			e solution obtained by mixing	g 25.5 g of CHCl ₃ and 40 g of
	CH ₂ Cl ₂ at the same temp		l	
	•	$_{3} = 119.5 u$ and mole	ecular mass of $CH_2Cl_2 = 85 u$)	
	a) 173.9 mm Hg b) 615.0 mm Hg			
	c) 347.9 mm Hg			
	d) 90.952 mm Hg			
52.	, ,	dissolving 24.5 g of	sodium hydroxide in distilled	water to give 1L solution. The
	molarity of NaOH in the		•	5
	(Given, that molar mass		(l^{-1})	
	a) 0.2450 M	b) 0.6125 M	c) 0.9800 M	d) 1.6326 M
53.	The molal elevation con	stant for water is 0.5	$52 \text{ K molality}^{-1}$. The elevation	caused in the boiling point of
	water by dissolving 0.25	mole of a non-volatil	e solute in 250 g of water will	
	a) 52°C	b) 5.2°C	c) 0.52°C	d) 0.052°C
54.	_		down if placed in hypertonic s	
	a) Plasmolysis	b) Haemolysis	c) Endosmosis	d) None of these

55.	Two solutions of glucose have osmotic pressure second solution, the osmotic pressure of the res					
	solution is) o # v	D 0 T 1			
	a) 1.0 L b) 1.5 L	c) 2.5 L	d) 3.5 L			
56.	The difference between the boiling point and fr (mol wt. = 342 gmol^{-1}) in 100 g of water is 10.		_			
	respectively, the weight of sucrose in the solution	on is about				
	a) 34.2 g b) 342 g	c) 7.2 g	d) 72 g			
57.	At temperature 327°C and concentration \mathcal{C} osm	otic pressure of a solution	is <i>p</i> , the same solutions at			
	concentration C/2 and a temperature 427°C sh	lows osmotic pressure 2 at	m, value of <i>p</i> will be			
	a) $\frac{12}{7}$ b) $\frac{24}{7}$	c) $\frac{6}{5}$	d) $\frac{5}{6}$			
	$\frac{3}{7}$ $\frac{7}{7}$	5	u) <u>-</u>			
58.	A non-ideal solution was prepared by mixing 30 mixture will be	0 mL chloroform and 50 m	L acetone. The volume of			
	a) >80 mL b) <80 mL	c) = 80 mL	d) ≥80 mL			
59.	The solubility of a gas in liquid at a temperature	e is directly proportional to	its:			
	a) Density b) Melting point	c) Boiling point	d) Pressure			
60.	Binary liquid mixtures which exhibit positive despected b. p.:	leviations from Raoult's la	w boil at temperature than the			
	a) lower b) Higher	c) Same	d) Cannot be said			
61.	Generally those gases are soluble in water to a	greater extent which :	,			
	a) Are easily liquefied					
	b) Are ionized in water	. >				
	c) React with water					
	d) All are correct					
62.	If the temperature increase from 0°C to 50°C at	atmospheric pressure, wh	nich of the following processes is			
	expected to take place more in case of liquids?					
	a) Freezing b) Vaporization	c) Sublimation	d) None of these			
63.	Abnormal colligative properties are observed o	only when the dissolved no	n-volatile solute in a given dilute			
	solution	·	S			
	a) Is a non-electrolyte	b) Offers an intense	colour			
	c) Associates of dissociates	d) Offers no colour				
64.	A solute is soluble in two immiscible liquids	which are present in a m	ixture. The concentration of the			
	solute in the upper layer will be:					
	a) Same as in the lower layer					
	b) Less than in the lower layer					
	c) More than in the lower layer					
	d) In fixed ratio with that in the lower layer					
65.	Distribution law is a special application ofan	d vice – versa.				
	a) Raoult's law					
	b) Henry's law					
	c) Dalton's law					
	d) None of these					
66.	A solution is prepared by dissolving 24.5 g of so	odium hydroxide in distille	d water to give 1L solution. The			
	molarity of NaOH in the solution is	·	5			
	(Given, that molar mass of NaOH = $40.0 g mol$	⁻¹)				
	a) 1000 g of solvent b) 1 L of solvent	c) 1 L of solution	d) 1000 g of solution			
67.	In a 0.2 molal aqueous solution of a weak acid I	HX, the degree of ionisation	is 0.3 Taking k_f for water as			
	1.85, the freezing point of the solution will be n	earest to	•			

	a) -0.480°C b) -0.360°C	c) -0.260°C	d) +0.480°C
68.	The vapour pressure (VP) of a dilute solution of no	on-volatile solute is P and	the VP of pure solvent is P_0
	the lowering of the VP is :		
	a) +ve b) -ve	c) P/P_0	d) P_0/P
69.	Volume of 0.6 M NaOH required to neutralise 30 cm	n^3 of 0.4 M HCl is	
	a) $20 cm^3$ b) $40 cm^3$	c) $45 cm^3$	d) $30 cm^3$
70.	In an osmotic pressure measurement experiment, a	5% solution of compound	'X'is found to be isotonic
	with a 2 $\%$ acetic acid solution . The gram molecular	r mass of ' X' is	
	a) 24 b) 60	c) 150	d) 300
71.	Benzene and toluene form nearly ideal solutions. At	25°C, the vapour pressure	e of benzene is 75 torr and
	that of toluene is 22 torr. The partial vapour pressu	re of benzene at 20° C for a	solution containing 78 g of
	benzene and 46 g of toluene in torr is		
	a) 53.5 b) 37.5	c) 25	d) 50
72.	Which of the following liquid pairs shows a positive	deviation from Raoult's la	w?
	a) Water-hydrochloric acid	b) Benzene-methanol	
	c) Water-nitric acid	d) Acetone-chloroform	
73.	Following solutions at the same temperature will be	e isotonic :	
	a) 3.42 g of cane sugar in one litre water and 0.18 g	of glucose in one litre water	er
	b) 3.42 g of cane sugar in one litre water and 0.18 g	of glucose in 0.1 litre wate	r
	c) 3.42 g of cane sugar in one litre water and 0.585	g of NaCl in one litre water	
	d) 3.42 g of cane sugar in one litre water and 1.17 g	of NaCl in one litre water	
74.	Which of the following liquid pair shows a positive	deviation from Raoult's lav	<i>y</i> ?
	a) Water-nitric acid	b) Acetone-chloroform	
	c) Water-hydrochloric acid	d) Benzene-methanol	
75.	Which of the following is the expression of Raoult's	law?	
	(p =vapour pressure of pure solvent, p_s =vapour p	ressure of the solution)	
	a) $\frac{p-p_s}{p} = \frac{n}{n+N}$ b) $\frac{p_s-p}{p} = \frac{N}{N+n}$	$(p-p_s-N)$	d) $\frac{p_s-p}{n} = \frac{N-n}{n}$
	$p \qquad n+N \qquad \qquad p \qquad N+n$	$p_s - N - n$	$p_s - N$
76.	Which of the following mixture does not show posit	ive deviation from the Rao	ult's law?
	a) Benzene + acetone	b) Acetone + ethanol	
	c) Acetone + chloroform	d) Water + ethanol	
77.	Who gave the phase rule?		
	a) Nernst		
	b) Willard Gibbs		
	c) Ostwald		
	d) Raoult		
78.	The volume of water to added to $100 \ cm^3$ of 0.5 N $_{\odot}$	I_2SO_4 to get decinormal co	ncentration is
	a) $400 cm^3$ b) $450 cm^3$	c) $500 cm^3$	d) $100 \ cm^3$
79.	40% by weight solution will contain how much mas	s of the solute in 1L solution	on, density of the solution is
	1.2 g/mL?		
	a) 480 g b) 48 g	c) 38 g	d) 380 g
80.	The azeotropic mixture of water (b. pt.100°C) and H	ICl (b.pt. 85°C) boils at 108	3.5°C.When this mixture is
	distilled it is possible to obtain		
	a) Pure HCl	b) Pure water	
	c) Pure water as well as HCl	d) Neither HCl nor H ₂ O i	n their pure states
81.	The normality of a 100 mL solution of sodium hydro	oxide which contains 4 g of	NaOH, is
	a) 0.5 b) 1.0	c) 1.5	d) 2.0
82.	The amount of ice that will separate out on cooling	a solute containing 50 g of	ethylene glycol in 200 g

water to -9.3°C will be

	a) 8.37 g b) 161.3 g	c) 3.87 g	d) 38.7 g
83.	Among the following substances, the	lowest vapour pressure is exerted by :	
	a) Water b) Mercury	c) Kerosene	d) Rectified spirit
84.	A solution has an osmotic pressure of	0.821 atom at 300 K. its concentration	n would be :
	a) 0.066 <i>M</i> b) 0.66 <i>M</i>	c) 0.033 <i>M</i>	d) 0.33 M
85.	The vant's Hoff factor for 0.1 M Ba(No	$(0_3)_2$ solution is 2.74. The degree of dis	sociation is
	a) 91.3% b) 87%	c) 100%	d) 74%
86.	What is the freezing point of a solution	n containing 8.1 g HBr in 100 g water a	assuming the acid to be 90%
	ionised? (k_f for water = 1.86 K mo	(l^{-1})	
	a) 0.85°C b) -3.53°C	c) 0°C	d) -0.35°C
87.	The relative lowering of vapour press	ure of an aqueous solution containing	non-volatile solute is 0.0125.
	The molality of the solution is		
	a) 0.1 M NaCl b) 0.1 M Ba	aCl ₂ c) 0.1 M sucrose	d) 0.1 M KCl
88.	5 L of a solution contains 25 mg of Ca	CO_3 . What is its concentration in ppm	? (mol. wt. of $CaCO_3$ is 100)
	a) 25 b) 1	c) 5	d) 2500
89.	A 0.025 M solution of monobasic acid	had a freezing point of -0.060 °C. The	pK_a for the acid is
	a) 1.2 b) 2	c) 2.5	d) 5.7
90.	If $0.15~g$ of a solute, dissolved in $15~g$	of solvent, is boiled at a temperature h	igher by 0.216°C than that of
	-	ht of the substance (molal elevation co	onstant for the solvent is
	2.16°C) is		
	a) 100 b) 10.1	c) 10	d) 1.001
91.	3.65 g of HCl is dissolved in 16.2 g of		_
	a) 0.1 b) 0.2	c) 0.3	d) 0.4
92.	If molecular interaction of two differ	The same and the s	n the molecular interactions of
	the same liquid molecules the mixture	e is expected to show:	
	a) Positive deviations		
	b) Negative deviations	EDUCATION	
	c) No deviationsd) Positive as well as negative deviati		
03	Equimolal solutions will have the sam		chowy
73.	a) Electrolysis	ie boning point, provided they do not s	SHOW.
	b) Association		
	c) Dissociation		
	d) Association or dissociation		
94.	6 g urea is dissolved in 90 g water. Th	e relative lowering of vapour pressure	e is equal to :
	a) 0.0196 b) 0.06	c) 1.10	d) 0.0202
95.	At 88°C benzene has a vapour pressu	<u> </u>	
		ixture with toluene that will boil at 8	_
	toluene form an ideal solution?		
	a) 0.416 b) 0.588	c) 0.688	d) 0.740
96.	Which of the following aqueous solut	ions produce the same osmotic pressu	re?
	(i)0.1 M NaCl solution		
	(ii) 0.1 M glucose solution		
	(iii)0.6 g urea in 100 mL solution		
	(iv)1.0 g of a non-electrolyte solute (2	(X) in 50 mL solution (molar mass of (X)	= 200)
	a) (i), (ii), (iii) b) (ii), (iii)	, (iv) c) (i), (ii), (iv)	d) (i), (iii), (iv)
97.	When 20 g of naphthoic acid ($C_{11}H_8O$	₂) is dissolved in 50 g of benzene (k_f	$= 1.72 K \text{ kg mol}^{-1}$), a freezing
	point depression of 2 K is observed. T	• •	
	a) 0.5 b) 1	c) 2	d) 3

GPLUS EDUCATION

98	The depression in f.p. is d	irectly proportional to :		
70.	a) Normality	b) Molality	c) Molarity	d) None of these
99.	•	lutions has the highest nor	•	a) Hone of these
	a) 6 g of NaOH/100 mL	-	c) N phosphoric acid	d) 8 g of KOH/L
100	The vapour pressure will		o) ii piioopiioiio woiw	a) o g or 11011/ 2
100	a) Hypertonic solution	56 16 11 661 61	b) Hypotonic solution	
	c) Isotonic solution		d) None of the above	
101	•	ethanol in water has vapou	=	
101	a) Less than that of water	-	b) More than that of wate	r
	c) Equal to that of water		d) Equal to that of methan	
102	. The condition for the vali	dity of Henry's law are ·	a) Equal to that of methal	
102	a) The pressure should no	= =		
	b) The temperature should			
		dissociate not enter into cl	hemical combination with	solvent
	d) All of the above	dissociate not enter into en	nemical combination with	Joivent
103	•	0.4% urea solution is 1.66 a	tm and that of a solutions	of sugar of 3 42% is 2 46
103		ions are mixed then the osr		
	a) 1.02 atm	b) 2.06 atm	c) 3.04 atm	d) 0.02 atm
104	•	was 0.52°C when 6 g of a c	•	,
104		er is 5.2°C per 100 g water		100 g of water, Molecular
		b) 60	c) 600	d) 180
105	a) 120 When a crystal of the solv	ite is introduced into a supe		
105		ite is introduced into a supe	er saturateu solution of the	solute:
	a) The solute dissolves	ralligas out		
	b) The excess solute cryst	The Last 1		
	c) The solution becomes			
106	d) The solution remains s	-	at hailing paint?	
100		lutions will have the highes	PA 1 1 2 2 3 10 1	d) 0.1 M umaa
107	a) 0.1 M BaCl ₂	b) 0.1 M FeCl ₃	c) 0.1 M NaCl	d) 0.1 M urea
107		ent osmotic pressure. The s	solution of lower osmotic p	ressure is called:
	a) Isotonic solution			
	b) Hypertonic solution			
	c) Hypotonic solution			
100	d) None of these	'- 100 A l ' f -l	1'-lt-'10 -/I	• .
108		ose is 180. A solution of glud		
100	a) 0.1 molal	b) 0.2 molal	c) 0.3 molal	d) 0.4 molal
109	Azeotropic mixture of HC		2000 1101	1) 20 20/ 11/01
440	a) 48% HCl	b) 22.2% HCl	c) 36% HCl	d) 20.2% HCl
110		int is 6 K for NaCl solution	1 If κ_f for water is 1.86 K/.	kg mol, amount of NaCl
	dissolved in 1 kg water is			
	a) 3.42	b) 1.62	c) 3.24	d) 1.71
111	. The amount of urea disso	lved in 500 cc of water (K_f	= 1.86°C) to produce a deg	pression of 0.186°C in the
	freezing point is			
	a) 9 g	b) 6 g	c) 3 g	d) 0.3 g
112		27°C) of an aqueous solution		of a protein is $2 \times$
	10^{-3} atm . If R=0.080 L a	$tm mol^{-1} K^{-1}$, the molecu	ılar weight of protein is	
	a) 7.2×10^5	b) 3.6×10^5	c) 1.8×10^5	d) 1.0×10^5
113	. Assuming that sea water i	is a 3.50 weight per cent aq	ueous solution of NaCl. Wh	nat is the molality of sea
	water?			
	a) 0.062 m	b) 0.0062 m	c) 0.62 m	d) 6.2 m

_			our pressure is lowered by 2.25 × molecular weight of the solute?				
a) 206	b) 302	c) 350	d) 276				
115. Van't hoff factor o	•	c) 550	a, 2, 0				
a) Benzoic acid is							
=	b) Benzoic acid has higher molar mass than benzene						
	ets associated in benzene	belizerie					
	ets dissociated in benzene						
, ,		vater, the normality of that s	solution is				
a) 0.33 N	b) 33.0 N	c) 0.11 N	d) 11.0 N				
•	•	g 75.5 g of pure KOH in 540					
a) 1.50 M	b) 2.50 M	c) 3.50 M	d) 5.01 M				
•	•	needed to prepare 5.0 L of a					
a) 2.5	b) 5.0	c) 10	d) 20				
-	•	_	ntaining non-volatile solute is				
	lity of the solution is about	-	maning non volume solute is				
a) 0.70	b) 0.50	c) 0.90	d) 0.80				
,	•	curately measured in the sh					
a) Berkeley and H		curately ineasured in the sir	ortest possible time by .				
b) Morse and Fraz	•						
c) Pfeffer method							
d) None of the abo		^					
-		.0 g toluene ($C_6H_5CH_3$), the	mole-fraction of henzene is				
4	$\frac{1}{2}$	1					
a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{1}{5}$	d) $\frac{1}{6}$				
400 4 1	U	J					
122. A thermometer w	hich can be used only for	accurate measurement of s	small differences in temperature is				
known as a:		accurate measurement of s	mall differences in temperature is				
known as a:			mall differences in temperature is				
known as a: a) Beckmann ther	rmometer		emall differences in temperature is				
known as a: a) Beckmann ther b) Contact thermo	mometer		emall differences in temperature is				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo	mometer		emall differences in temperature is				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist	rmometer ometer ometer cance thermometer	DUCATION					
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so	rmometer ometer ometer cance thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in	water has a freezing point	small differences in temperature is the depression of 0.0054° C. If K_f for				
known as a: a) Beckmann then b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the	rmometer cometer cometer cometer cometer cance thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the	water has a freezing pointabove molecule is :	t depression of 0.0054°C. If K_f for				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0	emometer properties of the content of the content of the correct formulation of the $\mathbb{C}[1]$ correct formulation of $\mathbb{C}[1]$ b) $\mathbb{C}[1]$	water has a freezing point above molecule is : Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄]				
known as a: a) Beckmann then b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevation	rmometer properties of the content of the content of the correct formulation of the content of	water has a freezing poing above molecule is: Cl_2 c) [Pt(NH ₃) ₄ Cl]Cl ₃ Cl_2 what will be the boiling p	t depression of 0.0054°C. If K_f for				
known as a: a) Beckmann then b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevation 1 atm pressure? (rmometer cometer cometer cometer cance thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the Cl b) [Pt(NH ₃) ₄ Cl ₂] con constant for water is 0.5 Assume b.p. of pure water	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling p	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at				
known as a: a) Beckmann then b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C	rmometer cometer cometer cometer cance thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the complete b) [Pt(NH ₃) ₄ Cl ₂] con constant for water is 0.5 Assume b.p. of pure water b) 100.26°C	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling pairs is 100°C) c) 100.52°C	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C				
known as a: a) Beckmann then b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevation 1 atm pressure? (a) 101.04°C 125. At certain temper	rmometer cometer cometer cometer cance thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the Cl b) [Pt(NH ₃) ₄ Cl ₂] con constant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of cometer	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling pairs is 100°C) c) 100.52°C	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar	rmometer cometer cometer cometer cance thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the cl b) [Pt(NH ₃) ₄ Cl ₂] con constant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of comass of solute is	water has a freezing point above molecule is : Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling p is 100°C) c) 100.52°C cane sugar is isotonic with a	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevation 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60	rmometer cometer cometer cance thermometer clution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the cl b) [Pt(NH ₃) ₄ Cl ₂] con constant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of comass of solute is b) 46.17	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling pairs is 100°C) c) 100.52°C	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevation 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N	rmometer cometer cometer cometer conce thermometer correct formulation of the correct formulation of the conconstant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of comass of solute is b) 46.17 H ₂ SO ₄ is	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling p is 100°C) c) 100.52°C cane sugar is isotonic with a c) 120	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N 1 a) 0.1	rmometer cometer cometer cometer cance thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the cl b) [Pt(NH ₃) ₄ Cl ₂] con constant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of comass of solute is b) 46.17 H ₂ SO ₄ is b) 0.2	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling pris 100°C) c) 100.52°C cane sugar is isotonic with a c) 120 c) 0.3	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90 d) 0.4				
known as a: a) Beckmann then b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]C 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N 1 a) 0.1 127. 3.0 molal NaOH so	rmometer cometer cometer cance thermometer correct formulation of the correct formulation of the correct formulation of the constant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of comass of solute is b) 46.17 H ₂ SO ₄ is b) 0.2 colution has a density of 1.1	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling price is 100°C) c) 100.52°C cane sugar is isotonic with a c) 120 c) 0.3 10 g/mL. The molarity of the	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90 d) 0.4 e solution is				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N 1 a) 0.1 127. 3.0 molal NaOH so a) 3.9732	rmometer cometer cometer cometer conce thermometer correct formulation of the correct formulation of the conconstant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of comass of solute is b) 46.17 H ₂ SO ₄ is b) 0.2 colution has a density of 1.1 b) 2.9732	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling pris 100°C) c) 100.52°C cane sugar is isotonic with a c) 120 c) 0.3 10 g/mL. The molarity of the c) 1.9732	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90 d) 0.4 e solution is d) 0.9732				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N 1 a) 0.1 127. 3.0 molal NaOH so a) 3.9732 128. How many gram of	rmometer cometer cometer cometer cance thermometer correct formulation of the correct formulation of t	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling price is 100°C) c) 100.52°C cane sugar is isotonic with a c) 120 c) 0.3 10 g/mL. The molarity of the c) 1.9732 c) prepare 500 g solution con	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90 d) 0.4 e solution is d) 0.9732 taining $10\% \frac{w}{w}$ NaOH solution?				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N 1 a) 0.1 127. 3.0 molal NaOH so a) 3.9732 128. How many gram of	rmometer cometer cometer cometer conce thermometer lution of [Pt(NH ₃) ₄ Cl ₄] in correct formulation of the cl b) [Pt(NH ₃) ₄ Cl ₂] con constant for water is 0.5 Assume b.p. of pure water b) 100.26°C ature a 5.12% solution of comass of solute is b) 46.17 H ₂ SO ₄ is b) 0.2 colution has a density of 1.1 b) 2.9732 cof NaOH will be required to	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling point is 100°C) c) 100.52°C cane sugar is isotonic with a c) 120 c) 0.3 10 g/mL. The molarity of the c) 1.9732 5 prepare 500 g solution conc) 0.5 g	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90 d) 0.4 e solution is d) 0.9732				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N I a) 0.1 127. 3.0 molal NaOH so a) 3.9732 128. How many gram o a) 100 g 129. The molal elevation	rmometer cometer cometer cometer cance thermometer correct formulation of the correct formulation of t	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling point is 100°C) c) 100.52°C cane sugar is isotonic with a c) 120 c) 0.3 10 g/mL. The molarity of the c) 1.9732 5 prepare 500 g solution conc) 0.5 g	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90 d) 0.4 e solution is d) 0.9732 taining $10\% \frac{w}{w}$ NaOH solution?				
known as a: a) Beckmann ther b) Contact thermo c) Clinical thermo d) Platinum resist 123. A 0.001 molal so water is 1.80, the a) [Pt(NH ₃) ₄ Cl ₃]0 124. The molal elevatio 1 atm pressure? (a) 101.04°C 125. At certain temper solute. The molar a) 60 126. Molarity of 0.2 N 1 a) 0.1 127. 3.0 molal NaOH so a) 3.9732 128. How many gram of	emometer cometer cometer cometer cometer cometer conce thermometer correct formulation of the correct	water has a freezing point above molecule is: Cl ₂ c) [Pt(NH ₃) ₄ Cl]Cl ₃ 52. What will be the boiling point is 100°C) c) 100.52°C cane sugar is isotonic with a c) 120 c) 0.3 10 g/mL. The molarity of the c) 1.9732 5 prepare 500 g solution conc) 0.5 g	t depression of 0.0054° C. If K_f for d) [Pt(NH ₃) ₄ Cl ₄] point of 2 molar sucrose solution at d) 99.74°C 0.9% solution of an unknown d) 90 d) 0.4 e solution is d) 0.9732 taining $10\% \frac{w}{w}$ NaOH solution?				

	c) Temperature			
	d) ΔH solution			
130.		enzene at a certain tempera	-	
		2.175 g is added to 39.08 g	-	pressure of the solution is
		e molecular weight of solid		
	a) 49.50	b) 59.60	c) 69.60	d) 79.82
131.		${ m l}$ between two immiscible see of dissociation and n is ${ m th}$	=	l in phase II and dissociated sociated then:
	a) $K = \frac{1}{c_{\text{II}}}$	b) $K = \frac{c_{\rm I}}{\sqrt[n]{c_{\rm II}(1-\alpha)}}$	c) $K = \frac{1}{c_{II}(1-\alpha)}$	d) $K = \frac{1}{\sqrt[n]{c_{\text{II}}}}$
132.	. Saturated solution of NaC	l on heating becomes :		
	a) Super saturated	b) Unsaturated	c) Remains saturated	d) None of these
133.	. At 25°C, the total pressure	e of an ideal solution obtair	ned by mixing 3 moles of 'A	I' and 2 moles of $I'B'$, is 184
	torr. What is the vapour p	ressure (in torr) of pure 'B	at the same temperature?	Y (Vapour pressure of pure
	'A' at 25°C is 200 torr)			
	a) 180	b) 160	c) 16	d) 100
134.	. At 40°C the vapour pressı	ares of pure liquids, benzer	ne and toluene, are 75 torr	and 22 torr respectively. At
				of 78 g benzene and 46 g
	toluene in torr assuming t	the ideal solution should be) :	
	a) 50	b) 25	c) 375	d) 53.5
135.	. Solutions <i>A, B, C</i> and <i>D</i> are	e respectively 0.1 M glucose	e, 0.05 M NaCl, 0.05 M BaCl	₂ and 0.1 M AlCl ₃ . Which
	one of the following pairs			-
	a) A and B	b) Band C	c) A and D	d) A and C
136.	p_A and p_B are the vapou			pectively of an ideal binary
		the mole fraction of compo		
		b) $p_B + x_A (p_A - p_B)$		
137.		rater at 23°C is 19.8 mm. 0.		
		are (in mm) of the resultan		G
	a) 19.0	b) 19.602	c) 19.402	d) 19.202
138.	. A solution of sucrose (Mo	lar mass = 342 g/mol) is p	repared by dissolving 68.4	g of it per litre of solution,
		ıre (R=0.082 L atmK ⁻¹ mo		-
	-	b) 0.01 M KNO ₃	*	d) 0.015 M glucose
139.	. Lowering in vapour press			, G
	a) 0.2 <i>m</i> urea	G		
	b) 0.1 <i>m</i> glucose			
	c) 0.1 m MgSO ₄			
	d) 0.1 <i>m</i> BaCl ₂			
140.	The K for I ₂ between CS ₂	and H ₂ O is 588 in favour o	f CS ₂ . One litre of aqueous	solution containing 1 g of I ₂
		S ₂ . What will be the amoun		
	a) 0.035 g	b) 0.010 g	c) 0.05 g	d) 0.04 g
141.	. The relative lowering of v	apour pressure of a dilute	aqueous solution containin	g non-volatile solute is
	0.0125. The molality of th	e solution is about		
	a) 0.70	b) 0.50	c) 0.90	d) 0.80
142.	A solution of 4.5 g of a pur	re non-electrolyte in 100 g	of water was found to free	ze at 0.465°C . The
	molecular weight of the so	olute closest to $(k_f = 1.86)$	1	
	a) 135.0	b) 172.0	c) 90.0	d) 180.0
143.		•	•	. If K_f and K_b for water are
		respectively, the above :		, ~
	a) - 6.54°C	b) 6.54°C	c) — 0.654°C	d) 0.654°C
	=	-	-	-

144.	Vapour pressure of pure $A = 100$ torr, moles = 2; vap	oour pressure of pure <i>B</i> =8	0 torr, moles = 3. Total
	vapour pressure of the mixture is	a) 100 tonn	d) 00 tonn
115	a) 440 torr b) 460 torr The heiling point of C. H. CH. OH. C. H. NH. and C.	c) 180 torr	d) 88 torr
145.	The boiling point of C_6H_6 , CH_3OH , $C_6H_5NH_2$ and C_6		o4 Cand 212 Crespectively.
	Which will show highest vapour pressure at room ter		D.C. H. NO.
116	a) C ₆ H ₆ b) CH ₃ OH	c) C ₆ H ₅ NH ₂	d) $C_6H_5NO_2$
146.	In a pair of immiscible liquids, a common solute d	issolves in both and the ϵ	equilibrium is reached. The
	concentration of solute in upper layer is:		
	a) Same as in lower layer		
	b) Lower than the lower layer		
	c) Higher than the lower layer		
	d) In fixed ratio with that in the lower layer		
147.	Blood cells retain their normal shapes in solutions w	hich are :	
	a) Isotonic to blood		
	b) Hypotonic to blood		
	c) Hypertonic to blood		
	d) Equinormal to blood		
148.	A solution has a 1 : 4 mole ratio of pentane to hexand		
	are 440 mm Hg for pentane and 120 mm Hg for he	exane. The mole fraction o	of pentane in vapour phase
	would be:		
	a) 0.786 b) 0.549	c) 0.478	d) 0.200
149.	The empirical formula of a non-electrolyte is $\mathcal{CH}_2\mathcal{O}$.	A solution containing 6g of	the compound exerts the
	same osmotic pressure as that of 0.05 M glucose solu	tion at the same temperati	ure. The molecular formula
	of the compound is		
	a) $C_2H_4O_2$ b) $C_3H_6O_3$	c) $C_5H_{10}O_5$	d) $C_4H_5O_4$
150.	A 5.2 molal aqueous solution of methyl alcohol, CH_3C	OH, is supplied. What is the	mole fraction of methyl
	alcohol in the solution?	ATTONI	
	a) 1.100 b) 0.190	c) 0.086	d) 0.050
151.	The weight of $H_2C_2O_4 \cdot 2H_2O$ required to pressure 50	00 mL of 0.2 N solution is	
	a) 63 g b) 6.3 g	c) 0.63 g	d) 126 g
152.	The elevation of boiling point method is used for the	determination of molecula	r weight of:
	a) Non-volatile and soluble solute		
	b) Non-volatile and insoluble solute		
	c) Volatile and soluble solute		
	d) Volatile and insoluble solute		
153.	$50~cm^3$ of 0.2 N HCl is titrated against 0.1 N NaOH sol	ution. The titration is disco	ontinued after adding
	$50~cm^3$ of NaOH. The remaining titration is completed		
	for completing the titration is	a by wwwg ole ittlein inc	, oranic or morrisquir ou
	a) $12 cm^3$ b) $10 cm^3$	c) $25 cm^3$	d) $10.5 cm^3$
154	Dissolution of a solute is an exothermic process if:	ej 25 ent	a) 10,0 cm
151	a) Hydration energy > lattice energy		
	b) Hydration energy < lattice energy		
	c) Hydration energy = lattice energy		
	d) None of the above		
155		n franzing naint?	
133	Which of the following shows maximum depression i	- -	d) alucoco
157	a) K_2SO_4 b) NaCl	c) Urea	d) glucose
120	Water will boil at 101.5°C at which of the following property of the second state of t		d) < 76 am of U.
1 [7	a) 76 cm of Hg The very pressure of pure liquid 4 is 0.90 ctm. Wh	c) > 76 cm of Hg	d) < 76 cm of Hg
15/.	The vapour pressure of pure liquid A is 0.80 atm. Wh	en a non-volaule <i>B</i> is adde	u to Aits vapour pressure

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 11

	drops to 0.60 atm. The m	ole fraction of B in the se	olution is	
	a) 0.125	b) 0.25	c) 0.5	d) 0.75
158	. One gram of silver gets d	istributed between 10 ci	m ³ of molten zinc and 10	00cm ³ of molten lead at 8000°C.
	The percentage of silver	still left in the lead layer	in approximately	
	a) 2	b) 5	c) 3	d) 1
159	. How many moles of Al_2 ($(SO_4)_3$ would be in 50 g	of the substance?	
	a) 0.083 mol	b) 0.952 mol	c) 0.481 mol	d) 0.140 mol
160	. The distribution law was	given by :		•
	a) Henry	b) Nernst	c) van't Hoff	d) Ostwald
161	. The vapour pressure of a	•		
	a) Mole fraction of solute			
	b) 1/(mole fraction of so			
	c) Mole fraction of solver			
	d) None of the above			
162	. At low concentrations, th	e statements that equim	olal solutions under a gi	ven set of experimental
	conditions have equal os	=	_	•
	a) Solutions of non-elect	=	b) Solutions of elect	rolytes only
	c) All solutions		d) None of the abov	
163		in two immiscible solv	•	f between two liquids so that its
				solute forms a stable trimer in the
	first liquid, the distributi		1 2	
	a) $3c_1 = c_2$	00		
	b) $c_1/\sqrt[3]{c_2}$ = constant	S 1	>	
	c) $c_1/3 = c_2$	141		
	d) $c_2/\sqrt[3]{c_1}$ = constant	~	P	
164		L of $MqCl_2$ and solution .	B contains 7 g/L of NaCl.	At room temperature, the
	competia processing of	A STATE OF THE PARTY OF THE PAR		,
	a) Solution A is greater t	han <i>B</i>	ICATION	
	b) Both have same osmo			
	c) Solution B is greater t			
	d) Cannot be determine			
165	. The normality of mixture	e obtained by mixing 100	$0 \text{ mL of } 0.2 \text{ M } H_2SO_4 +$	
	100 mL of 0.2 M NaOH is			
	a) 0.2	b) 0.01	c) 0.1	d) 0.3
166	. Two liquids X and Y form	•	•	ssure of 400 mm at 300 K when
	-			ixed in the molar ratio of 1:2 at
	the same temperature. T	he vapour pressures of t	he two pure liquids <i>X</i> an	d <i>Y</i> respectively are
	a) 250 mm, 550 mm	b) 350 mm, 450 mm	c) 350 mm, 700 mm	
167	. Iodine was added to a sy	stem of water and CS ₂ . '	Γhe concentration of I_2 i	n water and CS ₂ were found to be
	C_1/C_2 respectively. The r	atio of C_1/C_2 will change	e if:	
	a) More I ₂ is added			
	b) More CS ₂ is added			
	c) More water is added			
	d) Temperature is chang	ed		
160	. Which of the following so	olutions will have the hi	ghest boiling point?	
100				
100	a) Camphor	b) Naphthalene	c) Benzene	d) Water
	a) Camphor . Pressure cooker reduces		-	d) Water
		cooking time for food be	ecause	d) Water

		side the cooker crushes the		
		ical changes helped by a ris	-	
170.	- -		. When 2 mole of glucose	e are dissolved in 4000 g of
	water, the solution will be) 400 0 5 = 0 5	12.00.4=0.0
	a) 100.53°C	b) 101.06°C	c) 100.265°C	d) 99.47°C
171.		an aqueous solution which		
	a) 3.6×10^{-3}	b) 0.004	c) 5.6×10^{-3}	d) 0.996
172.	Colligative properties of a			
	a) Nature of both solvent		b) Nature of solute only	
4 = 0	c) Number of solvent par		d) The number of solute j	-
173		aximum boiling point is ob	•	
	a) $CaSO_4$	b) $BaCl_2$	c) NaCl	d) Urea
174	Lowering of vapour press	-		
	a) 0.1 M BaCl ₂	b) 0.1 M glucose	, , ,	d) Urea
175.		ve lowering of the vapour p	•	ot moles of the solute to
		oles in the solution" refers		
	a) Hess's law	b) Dalton's law	c) Raoult's law	d) Charles'law
176	-	poils at a temperature more	e than the boiling point of ϵ	either them. Hence, the
	binary solution shows			
	a) Negative deviation from			
	b) Positive deviation from			
	c) No deviation from Rao			
	· ·	viation from Raoult's law d		
177	_	true when components for	_	
	a) $\Delta H_m = \Delta V_m = 0$	b) $\Delta H_m < \Delta V_m$	c) $\Delta H_m = \Delta V_m = 1$	d) $\Delta H_m > \Delta V_m$
178	-	apour pressure of an aque	ous solution containing no	n-volatile solute is 0.0125.
	The molality of the solution		ATTON	
	a) Vapour pressure	b) Osmotic pressure	c) Boiling point	d) Freezing point
179		eight/volume) acetic acid is		
	a) 1 N	b) 1.3 N	c) 1.7 N	d) 1.9 N
180		ce (non-electrolyte) are mi		er.
		ition +520 mL of 1.2 M sec	ond solution.	
	What is the molarity of th			
	a) 2.70M	b) 1.344 M	c) 1.50 M	d) 1.20M
181		he boiling point and freezin		
		n $100\mathrm{g}$ of water is $105.0^\circ\mathit{C}$	•	$1.86 \text{ and } 0.51 \text{ K kg mol}^{-1}$
	respectively, the weight o	f sucrose in the solution is	about	
	a) 1 M solution of glucose		b) 0.05 M solution of gluc	
	c) 6% solution of glucose		d) 25% solution of glucos	se
182	. The mass of glucose that :	should be dissolved in 50 g	of water in order to produ	ice the same lowering of
	vapour pressure as is pro	duced by dissolving 1 g of ι	area in the same quantity o	of water is
	a) 1 g	b) 3 g	c) 6 g	d) 18 g
183	. The ratio of vapour press	ure over solution phase on	mixing two immiscible liq	uids is equal to :
	a) Ratio of their weights i	n mixture		
	b) Ratio of their mol. weig	ghts		
	c) Ratio of their moles in	liquid phase		
	d) Ration of their moles in	n vapour phase		
184	. Density of a 2.05 M soluti	on of acetic acid in water is	1.02 g/mL. The molality o	of the solution is
	a) $1.14 \text{ mol } kg^{-1}$	b) $3.28 \text{ mol } kg^{-1}$	c) $2.28 \text{ mol } kg^{-1}$	d) $0.44 \text{ mol } kg^{-1}$

185.			separately. Molarity of both ationship between the osm	
	a) $p_1 = p_2$	b) $p_1 > p_2$	c) $p_2 > p_1$	d) $\frac{p_1}{p_1 + p_2} + \frac{p_2}{p_1 + p_2}$
186.	-	3 g oxalic acid dihydrate is mpletely neutralise 10 mL o	made up to 250 mL. The voof this solution is	
	a) 40 mL	b) 20 mL	c) 10 mL	d) 4 mL
187.		rater at 20°C is 17.5 mmHg		
	If 18 g of glucose ($C_6H_{12}C_6$) solution will be	$ ho_6)$ is added to 178.2 g of w	ater at $20^{\circ}C$, the vapour pi	ressure of the resulting
	a) 17.675 mmHg	b) 15.750 mmHg	c) 16.500 mmHg	d) 17.325 mmHg
188.	=		nt lower than either of ther	n, when it
	a) Shows a negative devia		b) Shows no deviation fro	om Raoult's law
	c) Shows positive deviati	on from Raoult's law	d) Is saturated	
189.	The unit of molality is			
	a) mol L^{-1}	b) mol kg^{-1}	c) $mol^{-1} L^{-1}$	d) mol L
190.	The lubricating action of	an oil is more if it possess :		
	a) High vapour pressure			
	b) Low vapour pressure			
	c) High surface tension			
	d) High density			
191.	In which ratio of volume	0.4 M HCl and 0.9 M HCl ard	e to be mixed such that the	concentration of the
	resultant solution become	es 0.7 M ?	>	
	a) Air	b) Brass	c) Amalgam	d) Benzene in water
192.	Boiling point of water is d	lefined as the temperature	at which :	
	a) Vapour pressure of wa	ter is equal to one atmospl	neric pressure	
	b) Bubbles are formed	C EDIL	1.0.777.0.11	
	c) Steam comes out	PLUS EDU	.AHON	
	d) None of the above			
193.	A solution of 5 g of iodi	ne in CS ₂ was shaken witl	h the same volume of wate	er. The amount of iodine in
	water is : (Given K in favo	our of $CS_2 = 420$		
	a) 0.119 g	b) 0.0119 g	c) 0.00119 g	d) 1.19 g
194.	To neutralise completely	20 mL of 0.1 M aqueous so	lution of phosphorous acid	(H_3PO_3) , the volume of 0.1
	M aqueous KOH solution	required is		
	a) 10 mL	b) 20 mL	c) 40 mL	d) 60 mL
195.	At high altitude the boiling	g of water occurs at low te	mp. because :	
	a) Atmospheric pressure	is low		
	b) Temperature is low			
	c) Atmospheric pressure	is high		
	d) None of the above			
196.	The movement of solvent	molecules through a semip	permeable membrane is ca	lled
	a) Electrolysis	b) Electrophoresis	c) Osmosis	d) Cataphoresis
197.	The freezing point of wat	er is depressed by 0.37°C in	n a 0.01 mol NaCl solution.	The freezing point of 0.02
	molal solution of urea is o	lepressed by		
	a) 0.37°C	b) 0.74°C	c) 0.185°C	d) 0°C
198.	If 5.85 g NaCl (molecular	weight 58.5) is dissolved in	n water and the solution is	made up to 0.5 L, the
	molarity of the solution w	rill be		
	a) 0.1	b) 0.2	c) 0.3	d) 0.4
199.	Vapour pressure of CCl ₄ a	it 25°C is 143 mm of Hg and	d 0.5 g of a non-volatile sol	ute (mol. wt=65) is

	dissolved in 100 mL CCl ₄ .	Find the vapour pressure o	f the solution. (Density of ($CCl_4 = 1.58 \text{g/cm}^2)$
	a) 94.39 mm	b) 141.93 mm	c) 134.44 mm	d) 199.34 mm
200.	. The vapour pressure of w	ater at 20°C is 17.54 mm. W	Then $20\mathrm{g}$ of a non-ionic, su	ıbstance is dissolved in 100
	g of water, the vapour pre	ssure is lowered by 0.30 m	m. What is the molecular n	nass of the substance?
	a) 200.8	b) 206.88	c) 210.5	d) 215.2
201.	The freezing point (in°C)	of solution containing 0.1 g	of $K_3[Fe(CN)_6]$ (mol. wt 3	29) in 100 g of water
	$(K_f = 1.86 \text{ K kg mol}^{-1})$ is			
	a) -2.3×10^{-2}	b) -5.7×10^{-2}	c) -5.7×10^{-3}	d) -1.2×10^{-2}
202.	_	_		coefficient is 85 in favour of present in aqueous layer is
	a) 1:85	b) 85:1	c) 170:1	d) 1 : 170
203.	Osmatic pressure is 0.082	1 atm at temperature of 30	0 K. Find concentration in	mole per litre
	a) 0.33	b) 0.22×10^{-2}	c) 0.33×10^{-2}	d) 0.44×10^{-2}
204.	A solution contains 1.204	6×10^{24} hydrochloric acid	-	e solution. The strength of
	the solution is	,		3
	a) 6 N	b) 2 N	c) 4 N	d) 8 N
205.	•	.2 molar solution of urea at	•	,
	a) 4.92 atm	b) 1 atm	c) 0.2 atm	d) 27 atm
206.	•	used for the determination		,
	a) Molar mass		b) Equivalent weigh	
	c) Arrangement of molecu	ıles	d) Melting and boiling poi	nts
207	. Which of the following is 1)	
_0	a) Optical activity	nood comgant o proporty.	b) Osmotic pressure	
	c) Depression of freezing	point	d) Elevation of boiling poi	nt
208.	If liquids A and B form an		.,g p	
	P. al. al C. al. lands =		A SECURE A	
	b) Entropy of mixing is ze	ro PLUS EDUC	AHON	
	c) Free energy of mixing i			
		the entropy of mixing are ea	ach zero	
209.				g benzene. Molal elevation
		. Elevation in its boiling poi		8
			•	$K_b Y$
	a) $\frac{M}{K_b Y}$	b) $\frac{4K_bY}{M}$	c) $\frac{K_b Y}{4M}$	d) $\frac{K_b Y}{M}$
210.		ure of pure liquid 'A' is 520	mm Hg and that of pure li	quid 'B' is 1000 mm Hg. If a
		d ' B ' boils at $80^{\circ}C$ and 1 at		
	(1 atm = 760 mm Hg)		r	
	a) 52 mole per cent	b) 34 mole per cent	c) 48 mole per cent	d) 50 mole per cent
211.			=	between CCl ₄ and water (in
		solubility of iodine in CCl ₄ is		conversion dark and mater (iii
	a) 102.5 g/L	b) 65.6 g/L	c) 0.009 g/L	d) 81.2 g/L
212	=:			water, how many grams of
<i>414</i>	•			
		must you add to get the fre	- -	
212	a) 93 g	b) 39 g	c) 27 g	d) 72 g
Z13.		O ₄ solution is required to ne		
24.4	a) 50 mL	b) 5.0 mL	c) 0.50 mL	d) 100 mL
Z14.		· -	one is the best method	for the determination of
	molecular weight of prote	ms and polymers :		
	a) Osmotic pressure			

	b) Lowering in vapour pre			
	c) Lower in freezing point			
	d) Elevation in boiling point	nt		
215.	At a constant temperature	, which of the following aq	ueous solutions will have t	he maximum vapour
	pressure?			
	(Mol. wt NaCl = 58.5 , H_2SC	$O_4 = 98.0 \text{ g. mol}^{-1}$		
	a) 1 molal NaCl (<i>aq</i>)		b) 1 molar NaCl (<i>aq</i>)	
	c) 1 molal $H_2SO_4(aq)$		d) 1 molar $H_2SO_4(aq)$	
216.	What is the molarity of 0.2	N Na_2CO_3 solution?		
	a) 0.1 M	b) 0 M	c) 0.4 M	d) 0.2 M
217.	0.004 M Na ₂ SO ₄ is isotoni	c with 0.01 M glucose.Deg	ree of dissociation of Na ₂ So	O ₄ is
	a) 61	b) 244	c) 366	d) 122
218.	The most suitable method	for the determination of	molecular weight of oxyha	aemoglobin, a compound of
	high molecular weight is:			
	a) Osmotic pressure method			
	b) Vapour pressure loweri	_		
	c) Elevation of boiling point	nt method		
	d) None of the above			
219.	Density of a 2.05 M solution		1.02 g/mL. The molality of	f the solution is
	a) 9 L	b) 1.8 L	c) 8 L	d) 0.9 L
220.	The molar freezing point o			gar ($C_{12}H_{22}O_{11}$) is
	dissolved in 1000 g of wat			
	a) −1.86°C		c) +1.86°C	d) +2.86°C
221.	What amount of water is a	766		
	a) 80 mL	b) 60 mL	c) 40 mL	d) 90 mL
222.	-		otonic with a solution cont	aining 3.42 g of sucrose per
	litre. The molecular mass of		ATION	
	a) 5		c) 34200	d) 50000
223.	-	=		ion of solute B produces an
		then $0.05~M$ solution of Δ	4 at the same temperatur	e will produce an osmotic
	pressure equal to :			
	a) <i>P</i>	b) 1.5 <i>P</i>	c) 2 P	d) 3 <i>P</i>
224.	=		onic with 1% of a solution	of an unknown solute. The
	molar mass of unknown so	- :		
	a) 136.2	b) 171.2	c) 68.4	d) 34.2
225.	-	ion of a weak acid (HX) is	20 per cent ionized. The lo	owering in freezing point of
	this solution is:			
	$(K_f = 1.86 \text{ K/m for water})$			
	a) 0.56 K	b) $-0.56 K$	c) 1.12 K	d) -1.12 K
226.	Mole fraction of solute in b		=	
	a) 3.2	b) 2	c) 4	d) 3.6
227.	18 g of glucose $(C_6H_{12}O_6)$ solution at 100°C is	is added to 178.2g of wat	er. the vapour pressure of	water for this aqueous
	a) 759.00 torr	b) 7.60 torr	c) 76.00 torr	d) 752.40 torr
228	If 0.15 g of a solute dissolv	ed in 15 g of solvent is boil	led at a temperature higher	r by 0.216°C than that of
	the pure solvent, the mole	cular weight of the substa	nce is (molal elevation con	stant for the solvent is
	2.16°C)			
	a) 100	b) 102	c) 104	d) 1.02
229.	20 g of hydrogen is presen	t in a 5 L vessel. The molar	concentration of hydroger	n is

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 16

a) 1 b) 2	c) 3	d) 4
230. The normality of 0.3 M phosphorous acid (H ₃ PO ₃)		
a) 0.2 b) 0.4	c) 0.6	d) 0.8
231. The experimental molecular weight of an electroly	te will always be less than	its calculated value because
the value of van't Hoff factor, 'i' is:		D 7
a) Less than one b) Greater than one	c) One	d) Zero
232. At25° C , the highest osmotic pressure is exhibited by		
a) Urea b) Glucose	c) KCl	d) $CaCl_2$
233. The volume of 10 N and 4 N HCl required to make		
a) 0.50 L of 10 N HCl and 0.05 L of 4 N HCl	b) 0.60 L of 10 N HCl and	
c) 0.80 L of 10 N HCl and 0.20 L of 4 N HCl	d) 0.75 L of 10 N HCl and	l 0.25 L of 4 N HCl
234. The solubility of gas in liquid depends upon :		
a) Nature of gas		
b) Nature of solvent		
c) Temperature and pressure		
d) All of the above		
235. How much $K_2Cr_2O_7$ (Mol. wt. = 294.19) is required	to prepare one litre of 0.1	N solution?
a) 9.8063 g b) 7.3548 g	c) 3.6774 g	d) 4.903 g
236. The solubility of a gas in water depends on :		
a) Nature of the gas b) Temperature	c) Pressure of the gas	d) All of these
237. If a solution containing 0.072 g atm of sulphur in 10	00 g of a solvent $(k_f = 7.0)$	gave a freezing point
depression of 0.84°C, the molecular formula of sulp	hur in the solution is	
a) S_6 b) S_7	c) S ₈	d) S ₉
238. The vapour pressure of a dilute solution is not influ		, ,
a) Temperature of solution		
b) Melting point of solute		
c) Mole fraction of solute		
d) Degree of dissociation of solute	CATION	
239. For an aqueous solution, freezing point is -0.186° C	Elevation of the hoiling n	oint of the same solution is
$(k_f = 1.86^{\circ} \ mol^{-1} \ kg \ and \ k_b = 0.512^{\circ} \ mol^{-1} \ kg)$	" Lievation of the bonning p	onic of the same solution is
a) 0.186° b) 0.0512°	c) 1.86°	d) 5.12°
	-	
240. The statement, "The mass of a gas dissolved in a giv	-	temperature is
proportional to the pressure of the gas above the so		d) N 6 41
a) Henry's law b) Law of mass action	c) Dalton's law	d) None of these
241. Osmotic pressure of blood is 7.65 atm at 310 K. An	aqueous solution of gluco	se that will be isotonic with
blood iswt./vol.	2.4.500/	D 50 404
a) 5.41% b) 3.54%	c) 4.53%	d) 53.4%
242. Dissolving 120 g of urea (mol. Wt. 60) in1000 g of v	vater gave a solution of den	sity 1.15 g/mL. The
molarity of the solution is		
a) 1.78M b) 2.00M	c) 2.05M	d) 2.22M
243. Which is not a colligative property in the following:)	
a) pH ofa buffer solution	b) Boiling point elevatior	
c) Freezing point depression	d) Vapour pressure lowe	
244. An aqueous solution is 1.0 molal in KI. Which chang	ge will cause the vapour pre	ssure of solution to increase
;		
a) Addition of NaCl		
b) Addition of Na ₂ SO ₄		
c) Addition of 1.0 molal KI		
d) Addition of water		

245. The vapour pressure v	vill be lowest of		
a) 0.1 M sugar solution		b) 0.1 M KCl solution	
c) 0.1 M $Cu(NO_3)_2$ so		d) 0.1 M AgNO ₃ soution	n
246. Which one is a colligat		, 0 3	
a) Boiling point		c) Osmotic pressure	d) Freezing point
	, , ,	•	s solution which freezes at
-10° C? (K_f for water		,	
a) 3.540	b) 4.567	c) 5.376	d) 6.315
248. Which of the following	•		u) 0.515
a) 0.1 M urea	b) 0.1 M sucrose		d) $0.1 \text{ M } Al(NO_3)_3$
249. $10 \text{ cm}^3 \text{ of } 0.1 \text{ N monob}$		-	
	b) 0.15 N	c) 0.066 N	d) 0.66 N
a) 1.5 N	•	C) 0.000 N	u) 0.00 N
250. An example of a solution	on naving nquiu in gas is:		
a) Moist air			
b) Dry air			
c) Au-Hg			
d) $C_2H_5OH + H_2O$			4.6.60
251. Calculate the molal dep	pression constant of a solve	nt which has freezing point	t 16.6°C and latent heat of
fusion $180.75 Jg^{-1}$.			
a) 2.68	b) 3.86	c) 4.68	d) 2.86
		iling points becomes great	er than both of them. What is
the nature of this solut	ion?		
a) Ideal solution	31	b) Normal solution	
	with non-ideal solution	d) Positive deviation w	ith non-ideal solution
253. The amount of anhydr			
a) 6.0 g	b) 6.625 g	c) 66.25 g	, 0
254. If α is the degree of dis			alculating the molecular
mass is	OPLUS EDU		
a) 1 $-$ 2 α	b) $1 + 2 \alpha$	c) $1-\alpha$	d) $1 + \alpha$
	·) of a 3.60 M sulphuric acid	solution that is $29\% H_2SO$	$_4$ (molar mass = 98 g mol ⁻¹)
by mass will be			
a) 1.64	b) 1.88	c) 1.22	d) 1.45
256. Molal elevation consta	nt of a liquid is :		
a) The elevent in b.p. v	vhich would be produced by	dissolving one mole of sol	ute in 100 g of solvent
b) The elevation of b.p	. which would be produced	by dissolving 1 mole solute	e in 10 g of solvent.
c) Elevation in b.p. wh	ich would be produced by d	lissolving 1 mole of solute i	n 1000 g of solvent
d) None of the above			
257. The solubility of I_2 in v	vater increases in the prese	nce of :	
a) Alcohol	b) KI	c) CCl ₃	d) NaOH
258. A super saturated solu	tion is a metastable state of	, ,	
-	oility of that substance in wa		
b) Exceeds than its sol	•		
c) Less than its solubil	-		
d) Continuously chang	=		
259. When W_B g solute (mo		in W_A g solvent, the molalit	tv M of the solution is
a) $\frac{W_B}{M_B} \times \frac{1000}{W_A}$	b) $\frac{W_A}{M_B} \times \frac{1000}{W_B}$	c) $\frac{W_B}{W_A} \times \frac{M_A}{1000}$	d) $\frac{W_A}{W_B} \times \frac{M_B}{1000}$
260. Which one of the follow	υυ	л	nt?
a) 0.01 M Na ₂ SO ₄	b) 0.01 M KNO ₃	c) 0.015 M urea	d) 0.015 M glucose
		· ·	

261. Van't Hoff factor more tha	an unity indicates that the	solute in solution has				
a) Dissociated	b) Associated	c) Both (a) and (b)	d) Cannot say anything			
	262. For dilute solution Raoult's law states that					
_	of vapour pressure is equa					
-	ır pressure is equal to the ı					
	f the solution is equal to m					
_		ortional to amount of solute				
263. The van't Hoff factor of Ba	aCl ₂ at 0.01 M concentration	on is 1.98. The percentage o	of dissociation of BaCl ₂ at			
this concentration is		_				
a) 49	b) 69	c) 89	d) 98			
264. The amount of ice that w		g a solution containing 50 g	g of ethylene glycol in 200 g			
water to -9.3° C is : $(K'_f =$						
a) 38.71 g	b) 38.71 mg	c) 42 g	d) 42 mg			
265. Colligative properties of a						
a) Nature of both solvent	and solute					
b) Nature of solute only						
c) Nature of solvent only						
	f solute and solvent particl		li ii mi li ii cirol			
266. 19.85 mL of 0.1 N NaOH r	reacts with 20 mL of HCl so	olution for complete neutra	lization. The molarity of HCl			
solution is	1)000		D 0 0000			
a) 9.9	b) 0.99	c) 0.099	d) 0.0099			
267. Freezing point of an aque $(K = 0.513 \text{ and } K = 1.0)$		Elevation of boiling point of	i same solution would be:			
$(K_b = 0.512 \text{ and } K_f = 1.8$ a) 0.186°C	36 K molality -)) 0 002 °C	1) 0 227 0			
		c) 0.092 °C	d) 0.237 °C			
268. A solution of sucrose (Mo			g of it per litre of solution,			
	$R = 0.082 \text{ L atm} \text{K}^{-1} \text{ m}$		d) 20 4 atm			
a) 3.92 atm	b) 4.48 atm	CJ 5.92 aum	d) 29.4 atm			
269. When the vapour pressu they are said to show:	re of solutions of two figt	nds are iess man mose ex	pected from ideal solutions,			
a) Positive deviations from	m idaal bahayiaur					
b) Negative deviations from						
		negative deviations for hig	her concentration			
d) None of the above	lower concentrations and	negative deviations for mg	ner concentration			
270. Non- volatile solute when	dissolved in water:					
a) Decreases the vapour p						
b) Increases the boiling p						
c) Decreases the freezing						
d) All of the above						
271. At 27 °C, the osmotic pres	sure of a solution containi	ng 4.0 g solute (molar mass	s = 246) per litre at 27°C is:			
$(R = 0.0821 \text{atms. mol}^{-1})$						
a) 0.1 atm	b) 0.4 atm	c) 0.2 atm	d) 0.8 atm			
272. Which solution would exh	nibit abnormal osmotic pre	essure?				
a) Aqueous solution of ur	ea					
b) Aqueous solution of co	mmon salt					
c) Aqueous solution of glu	ucose					
d) Aqueous solution of su	crose					
273. Van't Hoff factor of aq K_2 S	SO_4 at infinite dillution ha	s value equal to				
a) 1	b) 2	c) 3	d) Between 2 and 3			
274. Which of the following sta	atements is false?					

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 19

	•	of same molality prepared i	in different solvent will hav	ve the same freezing point
	depression	-flti ii l	MDTl M i lit-	f 4l l+i
		of a solution is given by $\pi =$	-	
	c) The correct order of os $CH_3COOH > Sucrose$	smotic pressure for 0.01 M	aqueous solution of each c	ompound is BaCl ₂ > KCl >
	d) Raoult's law states tha fraction	t the vapour pressure of a d	component over a solution	is proportional to its mole
275		imolal aqueous solution wi	ll he highest for	
<i>413</i> ,		-		d) C2(NO)
276	, , ,	, (0,0	c) $C_6H_{12}O_6$	d) $Ca(NO_3)_2$
Z/0.	= =	nic with 0.01 M glucose.Deg	=	=
277	a) 75%	b) 50%	c) 25%	d) 85%
Z//.	-	in 69 g of ethanol. Mole fra	ction of ethanol in the resu	ltant solution is 0.6. What is
	the value of x in grams?	1) 06) 400	D 40
 -	a) 54	b) 36	c) 180	d) 18
278.	solution is called:	- -	om a more concentrated so	olution to less concentrated
	a) Osmosis	b) Diffusion	c) Plasmolysis	d) Fusion
279.	The molarity of the soluti	ion obtained by dissolving 2	2.5g of NaCl in 100 mL of w	ater is
	a) 0.00428 moles	b) 428 moles	c) 0.428 moles	d) 0.0428 moles
280.	To form a super saturate	d solution of salt one must	;	
	a) Cool slowly	b) Cool rapidly	c) Add some salt to cold solution	d) Use a clear vessel
281.	Solubility of deliquescent	substances in water is gen	erally:	
	a) High	b) Low	c) Moderate	d) Cannot be said
282.	For determination of mol	ecular weights, Raoult's lav	w is applicable only to	
	a) Dilute solutions of elec	-	b) Concentration solution	n of electrolytes
	c) Dilute solutions of non		d) Concentration solution	
283.	-	d for the neutralisation of a	solution containing 0.275	g of sodium hydroxide. The
	a) 0.97 N	b) 0.142 N	c) 0.194 N	d) 0.244 N
284.		vapour pressure of an aque	,	
	The molality of the soluti		8 -	
	a) 0.70		c) 0.60	d) 0.80
285.		lvent molecules move from		,
		re to lower vapour pressure		
	b) Higher concentration t		~	
		e to higher vapour pressur	ρ	
		re to lower osmotic pressu		
286		-		eparated by semipermeable
200.				blue colour of $Fe_4[Fe(CN)_6]$,
	the blue colour will be no		ar K4[re(en)6], produces	blue colour of realite (GIV)6],
	the blue colour will be no	ı	· 1	
		FeCl ₃	(B) K ₄ [Fe(CN) ₆] SPM	
	2) (4)			
	a) (A)			
	b) (B)			

GPLUS EDUCATION

c) In both (A) and (B)d) Neither in (A) nor in (B)

WEB: WWW.GPLUSEDUCATION.ORG

PHONE NO: 8583042324 $\,\,$ P a g e | 20 $\,$

287.	A substance is completely	y trimerised on dissolution	in a solvent. The van't Ho	off factor (i) for such change
	is:			, ,
	a) 1	b) 2	c) 3	d) 1/3
288.	The vapour pressure of a	pure liquid <i>A</i> is 40 mm Hg 32 mm Hg. What is the mole		_
	a) 0.5	b) 0.6	c) 0.7	d) 0.8
	The natural semipermeal	•		
	a) Gelatinous Cu ₂ [Fe(CN) b) Gelatinous Ca ₃ [(PO ₄) ₂ c) Plant cell d) Phenol layer) ₆]		
290.	A and B ideal gases. The r	nolecular weights of A and	B are in the ratio of 1:4. Th	ne pressure of a gas mixture
		of A and B is p atm. What is		_
	a) $\frac{P}{5}$	b) $\frac{P}{2}$	c) $\frac{P}{2.5}$	d) $\frac{3P}{4}$
	3	h dissolve with the liberation	213	4
	•		on of heat decreases with :	
	a) Decrease in temperatu			
	b) Increase in temperatur			
	c) No change in temperat	ure		
	d) None of the above	liquid in a closed container	dononda unon	
	a) Amount of liquid	nquiu iii a cioseu containei	b) Surface area of the cor	atainar
	c) Temperature	< L 3	d) None of the above	Itamei
	•	osmotic pressure at 273 K		0 g uros (n) and 10 g
	sucrose (p_3) are dissolved		when to g glucose (p_1) , t	$0 \text{ g urea } (p_2)$ and 10 g
	a) $p_1 > p_2 > p_3$		c) $p_2 > p_1 > p_3$	$d) n_1 > n_2 > n_3$
				h each other, a mathematical
	constant ratio exists betw		The figures in contact with	ir each other, a mathematical
	a) The weight of the solut			
	b) The concentration of s	-		
		f the solute in the two liquid	ds	
		of the solute in the two liqu		
	Which one is a colligative	=		
		t the vapour pressure of a c	component over a solution	is proportional to its mole
		(π) of a solution is given by	the equation $\pi = MRT$, where $\pi = MRT$, where $\pi = MRT$	here , M is the molarity of
1	The correct order of os $KCl > CH_3COOH > su$	smotic pressure for 0.01 M crose	aqueous solution of each	compound is BaCl ₂ >
			l in different solvents will l	have the same freezing point
296.	-	queous solution of a non-v	olatile solute is 100.15°C. \	What is the freezing point of
	= -	=		ume of water? The values of
		.512°C and 1.86°C K molalit		
	a) -0.544°C	b) -0.512 °C	c) -0.272°C	d) -0.1.86 °C
		two liquids has boiling poi		-
	a) Shows a negative devia		b) Shows a positive devia	
	c) Shows no deviation fro		d) Is saturated	

298. Beckmann thermometer are used to measure :

PHONE NO: 8583042324 Page | 22

	b) Freezing point of the	solution		
	c) Any temperature			
	d) Elevation in boiling p	oint or depression in fre	eezing point	
299	The partial pressure of	ethane over a saturated	solution containing 6.56	$ imes 10^{-2}$ g of ethane is 1 bar. If the
			rtial pressure of ethane wi	
	a) 0.762 bar	b) 1.762 bar	c) 0.1 bar	d) 0.2 bar
300	. Which is not applicable	to distribution law?	•	-
	a) Parke's process			
	b) Solvent extraction			
	c) Pattinson's process			
	d) Partition chromatogr	aphy		
301	. 2.5 L of NaCl solution co	ntain 5 moles of the sol	ute.What is the molarity?	
	a) 5M	b) 2M	c) 2.5M	d) 12.5M
302	. What is the freezing poi	nt of a solution containi	ng 8.1 g HBr in 100 g water	r assuming the acid to be 90%
	ionised (k_f for water =	1.86 kg mol^{-1})?		
	a) -0.35°C	b) −1.35°C	c) −2.35°C	d) -3.53°C
303	. Which solution will have	*	•	,
	a) 0.1 <i>M</i> BaCl ₂	b) 0.1 <i>M</i> urea		d) 0.1 <i>M</i> Na ₃ PO ₄
304	-			$\leq x_1 \leq 1$. The second component
	must follow Raoult's lav		_	1
	a) Close to zero		c) $0 \le x_2 \le 05$	d) $0 \le x_2 \le 1$
305	The van't Hoff factor(i)			, 2
	a) $1 + \alpha$	b) $1-\alpha$		d) $1 - 2\alpha$
306	•	7		nL of the aqueous solution to
	give 0.1 N?		1	•
	a) 10 g	b) 20 g	c) 2 g	d) 1 g
307		1 mole of Ar, 2 moles of	CO_2 , 3 moles of O_2 and 4 m	noles of N_2 . Without changing
			the partial pressure of O_2	
	a) Changed by about 16		b) Halved	
	c) Changed by 26%		d) Unchanged	
308	3. On a humid day in sumr	ner, the mole fraction of	gaseous a H_2O (water vap	oour) in the air at 25°C can be as
	high as 0.0287. Assumir	ng a total pressure of 0.9	77 atm. What is the partial	pressure of dry air?
	a) 94.9 atm	b) 0.949 atm	c) 949 atm	d) 0.648 atm
309	The normality of 2.3 M I	H ₂ SO ₄ solution is		
	a) 4.6 N	b) 5.6 N	c) 6.6 N	d) 7.6 N
310	. The process of extractin	g a solute from its solut	ion by an immiscible solve	nt can be more fruitful only if:
	a) A large quantity of th	e solvent is used at once		
	b) The number of extrac	ctions is increased, using	g small quantities of the sol	lvent
	c) The process is carried	d out at a high temperat	ure	
	d) Small quantities of th	e solution are added to	the extracting solvent in se	everal instalments
311	. Volume of water needed	d to mix with 10 mL N H	Cl to get 0.1 N HCl is	
	a) 900 mL	b) 9 mL	c) 90 mL	d) 100 mL
312	. The solubility of a gas in	creases in a liquid with		
	a) Decrease in temperat	ture	b) Increases in temp	erature
	c) Reduction of gas pres	ssure	d) Amount of liquid t	taken
313			<i>n</i> -heptane and ethanol. Wl	
	statements is correct re			Ç
	a) The solution formed			

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

a) Boiling point of the solution

GPLUS EDUCATION

				•			
	b) The solution is non-ide	eal, showing positive devia	tion from Raoult's law				
	c) The solution is non-ideal, showing negative deviation from Raoult's law						
	d) <i>n</i> -heptane shows positive deviation while ethanol show negative deviation from Raoult's law						
314.		ce in 50 g of water, the decr	=				
		molecular weight of substa	~ -	o .			
	a) 105.4	b) 118.2	c) 137.2	d) 154.2			
315.	Which is correct represen	•	-,	-,			
0 2 0 .	a) $F = P + C + 2$	pride rene.					
	b) $F + P = C + 2$						
	c) $F + C = P + 2$						
	d) None of these						
316.	•	te aqueous solution of gluc	ose is 750 mm of mercury a	at 373 K. The mole fraction			
010	of solute is	to aqueous solution of grace	obe is 700 min of mercury c	ico, o in the mole fraction			
	a) $\frac{1}{76}$	b) 1	a) ¹	a) 1			
		b) $\frac{1}{7.6}$	c) $\frac{1}{38}$	d) $\frac{1}{10}$			
317.	_	a nonelectrolyte is CH_2O . A		-			
	-	s that of 0.05 M glucose sol		-			
	a) <i>CH</i> ₂ <i>O</i>	b) $C_2H_4O_2$	c) $C_4H_8O_4$	d) $C_3H_6O_3$			
318.	Distribution law is applic						
	a) Temperature remains						
	b) Dilute solutions are en						
	c) The two solvents are r	nutually insoluble					
	d) All are correct		>				
319.		weak intermolecular forces	of attraction in a liquid?				
	a) High boiling point						
	b) High vapour pressure	1.0					
	c) High critical temperat						
	d) High heat of vaporizat		ΈΔΤΙΩΝ				
320.		ea dissolved per litre if its a	iqueous solution is isotonic	c with 10% cane sugar			
	solution? (mol.wt.of urea	•) 4 55 4 (7	D 4 6 7 /7			
004	a) 200 g/L	b) 19.2 g/L	c) 17.54 g/L	d) 16.7 g/L			
321.	The solubility order for the						
	a) $NH_3 > CO_2 > O_2 > H_2$						
	b) $H_2 > O_2 > NH_3 > CO_2$	•					
	c) $CO_2 > NH_3 > O_2 > N_2$						
222	d) $O_2 > H_2 > NH_3 > CO_2$		1 1 1	21 II CC C			
322.			nave usual meanings, the vi	an't Hoff factor (i) cannot be			
	calculated by which one	of the expressions?	1				
	a) $\pi V = \sqrt{inRT}$		b) $\Delta T_f = i k_f . m$				
	c) $\Delta T_b = i k_b . m$		d) $\frac{p^{\circ} \text{solvent} - p_{\text{solution}}}{p^{\circ} \text{solvent}} = i \left(\frac{1}{N} \right)$	$\left(\frac{n}{+n}\right)$			
323.	One mole of non-volatile	e solute is dissolved in two	1 SOLVEILE	our pressure of the solution			
	relative to that of water i			Processing and the second			
	a) 2/3	b) 1/3	c) 1/2	d) 3/2			
324.		•		f 2.5 g of A in 100 g of water			
		by 0.3°C. The molar mass of		0 0			
	a) 31	b) 62	c) 122	d) 244			
325.		•	•	anions in aqueous solution,			
		int of water (ΔT_f) , when 0.					
	water, is $(k_f = 1.86 \text{ Kkg})$		1	O .			

a) 0.0372 K	b) 0.0558 K	c) 0.0744 L	d) 0.0186 K
326. The equilibrium in a h	•	,	,
a) Distribution law	b) Phase rule	c) Both (a) and (b)	d) None of these
•	•		verage the molecules in the two
phases have equal:		9 F	
a) Potential energy			
b) Total energy			
c) Kinetic energy			
d) Intermolecular for	res		
_		HCl are to be mixed such tha	t the concentration of the
resultant solution bec		rar are to be immed buen and	
a) 4:9	b) 2 : 3	c) 3:2	d) 1:1
329. Formation of a solution	*	•	u) 1 . 1
	eparated solvent molecul		
	parated solvent molecules		
	t and solute molecules \rightarrow	-	
Solution so formed wi		301αα011, Δ113	
a) $\Delta H_{soln} = \Delta H_1 - \Delta H_2$		b) $\Delta H_{soln} = \Delta H_3 - \Delta$	И ЛИ
c) $\Delta H_{soln} = \Delta H_1 + \Delta H_2$	-	d) $\Delta H_{soln} = \Delta H_3 - \Delta H_3$ d) $\Delta H_{soln} = \Delta H_1 + \Delta H_3$	
			e boiling point of NaCl solution
for the same molal co		incis 0.1 C then what win bo	e boiling point of waci solution
a) 0.1	b) 0.2	c) 0.16	d) 0.26
•			u) 0.20
331. Which is correct repre	- 2		
•	efficient K is in favour of		
•	efficient K is in favour of	phase II	
c) The distribution co	efficient is <i>K</i>		
d) None of the above	TRAILIC FD	LICATION	
			hypotonic solution is called :
a) Plasmolysis	b) Haemolysis	c) Exosmosis	d) None of these
			and CS_2 is found to be c_1 and c_2
	o of c_1/c_2 will be constan	t only if :	
a) The solutions are d			
b) The temperature re			
	changing the immiscibili	ty of solvents nor itself chan	ging in molecular state
d) All of the above			
			A solution containing 8 g/litre
benzoic acid in ether l	ayer is shaken with 2 litr	re water. The concentration	of acid in water layer is :
a) 1	b) 2	c) 3	d) 4
335. Which one is correct?			
a) Molality changes w	-		change with temperature.
	change with temperature	-	ot change with temperature.
			olvent (B) is 95% of the vapour
			\mathcal{I}_B and \mathcal{M}_A are molecular weights
	ly, the weight ratio of the		
a) 0.15	b) 5.7	c) 0.2	d) 4.0
337. Van't Hoff factor(i):			
a) Is less than one in o			
b) Is more than one in	case of association		

	normal molecular	mass			
	c) $i = \frac{\text{normal molecular}}{\text{observed molecula}}$	r mass			
	observed molecular mass $d) i = \frac{\text{observed molecular mass}}{\text{normal molecular mass}}$				
	normal molecular	mass			
338		t of a solution containi	ng 8.1 g HBr in 100 g wate	er assuming the acid to be 90%	
	ionised?				
	$(k_f \text{ for wt.} = 1.86 \text{ K mol}^{-1})$)			
	a) 0.85° <i>C</i>	b) −3 . 53° <i>C</i>	c) 0° <i>C</i>	d) −0.35° <i>C</i>	
339	1 kg of NaOH solution con		= =		
	a) About 0.1 N	b) Decinormal	c) 0.1 molal	d) 0.1 molar	
340	2 N HCl solution will have				
	a) 4.0 N H ₂ SO ₄	b) 0.5 N <i>H</i> ₂ <i>SO</i> ₄	c) 1 N H_2SO_4	d) 2 N <i>H</i> ₂ <i>SO</i> ₄	
341	Two bottles A and B conta	-	ous solution of sulphuric a	cid respectively	
	a) A is more concentrated				
	b) B is more concentrated		C D		
	c) Concentration of A is each	=			
212	d) It is not possible to con Which of the following ca	· =		mothod?	
342	a) Relative lowering of va		b) Lowering of vapo		
	c) Vapour pressure of the		d) All of the above	our pressure	
343	Consider the following aq		•	electrolytes	
0 10	I. 0.1 m urea	accus soracions and a			
	II. $0.04 \text{ m Al}_2(SO_4)_3$				
	III. 0.05 m CaCl_2	14			
	IV. 0.005 m NaCl		P		
	The correct statement reg	garding the above solu	tion is		
	a) Freezing point will be	lowest for solution I	b) Freezing point w	rill be highest for solution IV	
	c) Boiling point will be his	ghest for solution IV	d) Vapour pressure	will be highest for solution II	
344		-	undergoes dissociation i	n one solvent and association i	in
	other solvent is respective	-			
	a) Greater than one and g				
	b) Less than one and grea				
	c) Less than one and less				
245	d) Greater than one and le		1 1		
345	The plots	of	$\frac{1}{X_A}$ vs. $\frac{1}{Y_A}$	(where X_A and Y_A	A
	are the mole fraction of lie	quid A in liquid and va	pour phase respectively)	is linear with slope an	ıd
	intercepts respectively:				
	a) P_A^0/P_B^0 and $\frac{(P_A^0 - P_B^0)}{P_B^0}$				
	b) P_A^0/P_B^0 and $\frac{(P_B^0 - P_A^0)}{P_B^0}$				
	c) P_B^0/P_A^0 and $\frac{(P_A^0 - P_B^0)}{P_B^0}$				
	d) P_B^0/P_A^0 and $\frac{(P_B^0 - P_A^0)}{P_B^0}$				
346	Phenol dimerises in benze	_			
0.45	a) 1.92	b) 0.98	c) 1.08	d) 0.92	
34/		$_2$ 50 $_4$ solution that has	a density 1.84 g/cc at 35°	C and contains 98% solute by	
	weight?	b) 1 94 M	c) Q 41 M	d) 19 4 M	
	a) 4.18 M	b) 1.84 M	c) 8.41 M	d) 18.4 M	

348.	348. A solution containing 4 g of polyvinyl chloride in 1 litre of dioxane was found to have an osmotic pressure				
	of 6 $ imes$ 10^{-4} atm at 300 K. The molecular mass of the polymer is :				
	a) 3×10^3	b) 1.6×10^5	c) 5×10^4	d) 6.4×10^2	
349.	Binary liquid solutions w	hich exhibit negative devia	itions from Raoult's law bo	il at temperaturethan the	
	expected value :				
	a) Lower	b) Higher	c) Same	d) Cannot be said	
350.	Ethylene glycol is used as	an antifreeze in a cold clim	nate. Mass of ethylene glyco	ol which should be added to	
			ll be (K_f for water = 1.86 K	K kg mol ⁻¹ . and molar mass	
	of ethylene glycol = 62 g	mol^{-1})			
	a) 804.32 g	b) 204.30 g	c) 400.00 g	d) 304.60 g	
351.	What happens when an e	gg is kept in saturated solu	tion of NaCl after removing	g its hard shell in dilHCl?	
	a) Egg will swell		b) Egg will shrink		
	c) Egg will remain same		d) Egg will first shrink an		
352.	At 40°C, the vapour press	sure (in torr) of methyl alc	$\operatorname{cohol}(A)$ and ethyl alcohol	(B) solution is represented	
	by:				
		$e X_A$ is mole fraction of met	hyl alcohol. The value of lir	ne	
	$X_A \longrightarrow 0, \frac{P_B^0}{X_B}$ and lime X_B	$\rightarrow 0, \frac{P_A^0}{X_A}$ are:			
	a) 138, 258	b) 258, 138	c) 120, 138	d) 138, 125	
353.	What will be the molality	of a solution having 18 g of		dissolved in 500 g of water?	
	a) 1 <i>m</i>	b) 0.5 <i>m</i>	c) 0.2 <i>m</i>	d) 2 <i>m</i>	
354.		law, the distribution of sol	ute in two phases is given l	by the expression,	
	$K = \frac{\text{concentration of solute in}}{\text{concentration of solute in}}$	n phase I	>		
	the numerical Value of co				
	a) The temperature of the				
	b) The nature of solute di				
	-		LATTONI		
	d) All of the above	iscible solvents used	AHON		
355.		ctane form an ideal solutio	n, At 373 K, the vapour pre	essures of the two liquid	
		nd octane) are 105 kPa and			
		of heptanes and 35 g of octa			
	and of octane = 114 gmod			1 0	
	a) 72.0 kPa	b) 36.1 kPa	c) 96.2 kPa	d) 144.5 kPa	
356.	=	required to oxidise 35 mL	•	=	
	a) 29.2 mL	b) 17.5 mL	c) 175 mL	d) 145 mL	
357.	•	ium hydroxide on titration	•		
		molarity of barium hydroxi			
	a) 0.07	b) 0.14	c) 0.28	d) 0.35	
358.	An ideal solution is that w		-, -, -, -	,	
	a) Obey Raoult's law		b) Shows positive deviati	on from Raoult's law	
	c) Shows negaitive deviat	tion from Raoult's law	d) Has no connection wit		
359.	•	solution of lead nitrate in \			
	a) 2°C	b) 1°C	c) 0°C	d) Below 0°C	
360.	Which of the following sta	•	-,	,	
0	a) The relative lowering of		ıtion is equal to the mole fr	raction of the solute present	
	in the solution. b) Passage of solute mole	cular towards colution side	a through cominarmoable r	nombrano is osmosis	
	b) rassage of solute mole	cules towards solution side	e un ough semipermeable r	nembrane is osinosis.	

d) The boiling point of a liquid is the temperature at which its vapour pressure becomes equal to 260

c) The boiling point of solution is always lower than the solvent.

mm			
mm. 361. Which is a colligative p	aronerty?		
	b) Free energy	c) Heat of vanorisation	d) Change in pressure
		t of $A - A$ and $B - B$, the sol	
from Raoult's law		2 2, 110 301	
a) Positive	b) Negative	c) No	d) Cannot predicted
-	_	fected by change in tempera	
a) Molarity	b) Molality	c) Mole fraction	d) Weight fraction
-	· •	eous solution containing 0.2	
a) 0.6	b) 0.2	c) 1.0	d) 1.2
•		ing 0.6 g urea in 200 g wate	•
elevation constant.	, -		
a) 10 K kg mol ^{–1}	b) 10 K g mol^{-1}	c) 10 K kg mol	d) 1.0 K kg mol ^{–1}
	$H_2 SO_4$ is diluted from 1 L to	o 10 L. What is the normalit	y of the solution?
a) 0.25 N	b) 1 N	c) 2 N	d) 7 N
367. A solution containing	4 g of polyvinyl chloride pol	lymer in one litre of dioxane	was found to have an
		approximate molecular weiş	
a) 1.5×10^3		c) 1.0×10^4	d) 2×10^{12}
368. The partition coefficient	ent of solute X in between	n immiscible liquids A and	B is 10 in favour of A . The
partition coefficient of	X in favour of B is:		
a) 0.1	b) 10	c) 0.01	d) 100
369. At 80°C, the vapour pr	essure of pure liquid $'A'$ is 5	520 mm Hg and that of pure	liquid $'B'$ is 1000 mm Hg. If a
mixture of solution 'A'	and $'B'$ boils at 80°C and 1	atm pressure, the amount of	of $'A'$ in the mixture is : (1 atm
$=760 \mathrm{mm}\mathrm{Hg})$		a .	
		c) 34 mol per cent	d) 48 mol per cent
370. Which of the following	g is a colligative property?		
a) Boiling point	b) Freezing point	c) Osmotic pressure	d) Vapour pressure
	ure obtained by mixing 100	mL of 0.2 M H_2SO_4 +	
100 mL of 0.2 M NaOH	is		
a) The nature of gas		b) The temperature	
c) The nature of the so		d) All of the above	
372. Volume of 0.6 M NaOH	I required to neutralise 30 $lpha$	cm ³ of 0.4 M HCl is	
a) 3:4	b) 1:2	c) 1:4	d) 1 : 1
		oncentration of the solution	
a) 2 molar	b) 2 molal	c) 1 normal	d) 1 molal
	-		describes a colligative effect?
	pure water decreases by th		
	e water decreases by the ac		
= = = =	e benzene increases by the		
	-	the addition of naphthalen	9
	ed to mix with 10 mL 10 N		
a) 1000 mL	b) 990 mL	c) 1010 mL	d) 10 mL
	-		The total vapour pressure of
		Yand 2 moles of Ywould be	N =0 =
a) 68 Torr	b) 140 Torr	c) 48 Torr	d) 72 Torr
			mall hole is kept on top of the
-	e vapour pressure of the liq		
	uld be if the glass plate wer		
bj Same as what woul	d be if the glass plate were i	removea	

GPLUS EDUCATION

c) Less than what would be if the glass plate were	removed	
d) Cannot be predicted	aviation as .	
378. In a mixture A and B components show negative de	eviation as:	
a) $\Delta V_{\text{mix}} = +\text{ve}$		
b) $\Delta H_{\text{mix}} = -\text{ve}$	Dintonaction	
c) $A - B$ interaction is weaker than $A - A$ and $B - A$	<i>B</i> interaction	
d) None of the above reason in correct	ouo oud uuotoin vulsiale v	anonomic used 2
379. For determination of molar mass of colloids, polym		
a) Diffusion pressure	b) Atmospheric press	sure
c) Osmotic pressure	d) Turgor pressure	
380. In countries nearer to polar region, the roads are s	orinkied with CaCi ₂ . This	S IS
a) To minimise the wear and tear of the roads		
b) To minimise the snow fall		
c) To minimise pollution	1	
d) To minimise the accumulation of dust on the roa		
381. Camphor is used as solvent to determine mol. v	vt. or non-volatile solut	te by Rast method because for
camphor:		
a) It is readily available		
b) It is volatile		
c) Molal depression constant is high		
d) It is solvent for organic substances		1.00
382. Iodine was added to a system of water and CS ₂ . The		ne in water and CS_2 were found
to be c_1 and c_2 respectively. The ratio c_1/c_2 will no	t change only if :	
a) More iodine is added		
b) More water is added		
c) More CS ₂ is added		
d) The temperature is changed	the relative landing of	francous processes is a small to
383. When a non-volatile solute is dissolved in a solvent	, the relative lowering o	i vapour pressure is equal to
a) Mole fraction of solute		
b) Mole fraction of solvent		
c) Concentration of the solute in gram per litre		
d) Concentration of the solute in gram per 100 mL	a dissolved substance be	otraroon .
384. Distribution law holds good for the distribution of a) Liquid-liquid phases	a dissolved substance be	etween:
b) Liquid-liquid and liquid-gas phases		
c) Liquid-liquid and liquid-solid phases		
d) Liquid-gas, liquid-liquid and liquid-solid phases		
385. A solution containing 1.8 g of a compound (empiric	val formula CU (1) in 10	a of water is observed to freeze
at $-0.465^{\circ}C$. The molecular formula of the compound		g of water is observed to freeze
-	iiu is	
$(K_f \ of \ water = 1.86 \ kg \ K \ mol^{-1})$	-) C II O	D C H O
a) $C_2H_4O_2$ b) $C_3H_6O_3$	c) $C_4H_8O_4$	d) $C_6H_{12}O_6$
386. If a 5.25% (wt./vol.) solution of a non-electrolyte	· · · · · · · · · · · · · · · · · · ·	
wt = 60) is the same solvent then the molecular we $\frac{1}{2}$		
a) 210.0 g mol^{-1} b) 90.0 g mol^{-1}	c) 115.0 g mol^{-1}	d) 105 g mol ⁻¹
387. Which has the minimum freezing point?		1
a) One molal NaCl aqueous solution	b) One molal CaCl ₂ ac	
c) One molal KCl aqueous solution	d) One molal urea aqı	
388. In a 0.2 molal aqueous solution of a weak acid HX ,		is 0.3. Taking K_f for water as
1.85, the freezing point of the solution will be near	est to	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 28

a) −360°C	b) 0.260°C	c) +0.480°C	d) -0.480°C
389. 100 cc of 0.6 N H_2SO_4 an		-	
a) 0.2 N	b) 0.4 N	c) 0.8 N	d) 0.6 N
390. The mole fraction of wat			
a) $\frac{20}{80}$	b) $\frac{80}{20}$	c) $\frac{68}{77}$	d) $\frac{77}{68}$
		, ,	68
391. Which of the following	_	-	
a) Normality	b) Molarity	c) Molality	d) ppm
392. Which of the following c	ompounds correspond to m	aximum van'thoff factor fo	r dilute solution?
a) HCl	b) MgSO ₄	c) K_2SO_4	d) K_4 Fe(CN) ₆
393. Which of the following is	s incorrect?		
a) Relative lowering of v	apour pressure is independ	lent	
b) Vapour pressure of a	solution is lower than the va	apour pressure of the solve	nt
c) The vapour pressure	is a colligative property		
d) The relative lowering	of vapour pressure is direct	tly proportional to the mol	e fraction solute
394. If 20 mL of 0.4 N NaOH s	olution completely neutrali	zes 40 mL of a dibasic acid,	the molarity of the acid
solution is	• •		•
a) 0.1 M	b) 0.3 M	c) 0.5 M	d) 0.7 M
395. Which of the following s			
a) 0.1 M FeCl ₃	b) 0.1 M BaCl ₂	c) 0.1 M NaVl	d) 0.1 M urea
396. The vapour pressure of t	_	•	-
• •	ble of P and 2 mole of Q wou	-	y
a) 68 torr	b) 20 torr	c) 140 torr	d) 72 torr
397. Van't hoff factor of $Ca(N)$		c) 110 toll	a, / 2 to
a) One	b) Two	c) Three	d) four
398. The van't Hoff factor(i) f	*	•	a) ioui
a) 10	b) 4	c) 5	d) 0.25
399. The Henry's law constan			-
		and the same of th	of water of 298 K and 5 atm
pressure is	uniber of moles of N ₂ from	all dissolved iii 10 iiioles	of water of 250 K and 5 atm
a) 4×10^{-4}	b) 4.0×10^{-5}	c) 5.0×10^{-4}	d) 4.0×10^{-6}
400. As a result of osmosis, the	,		uj 4.0 × 10
, ,	ie volume of the concentrate	eu solution :	
a) Gradually decreases			
b) Gradually increases			
c) Suddenly increases			
d) None of these	.1 1	CO 4 M 1 1 C II	NO () LOW COOK)
401. The relationship betwee	n the values of osmotic pres	ssure of 0.1 M solution of K	$NO_3(p_1)$ and $CH_3COOH(p_2)$
n_1 n_2			
a) $\frac{p_1}{p_1+p_2} = \frac{p_2}{p_1+p_2}$	b) $p_1 > p_2$	c) $p_2 > p_1$	d) $p_1 = p_2$
402. The statement "the relat	ive lowering of the vapour រុ	oressure is equal to th ratio	ot moles of the solute to
the total number of the r	noles in the solution" refers	to	
a) Decrease the freezing	point of water in the winter	r and increase the boiling p	point of water in the
summer	•		
b) Only decrease the free	ezing point of water		
c) Only increase the boil			
d) Be used for cleaning t			
403, 100 mL of water and 50		with succinic acid. At equi	librium ether laver contains
		3 q • ·	

0.127 g and water layer contains 1.843 g of succinic acid. The partition coefficient of succinic acid in favour

of water is:

GPLUS EDUCATION

	a) 7.26	b) 10	c) 2	d) 4.5	
404.	In cold countries, ethylene	e glycol is added to water in	n the radiators of cars duri	ng winters. It results in :	
	a) Lowering in boiling point				
	b) Reducing viscosity				
	c) Reducing specific heat				
	d) Lowering in freezing po	oint			
405.			ar mass M_2 . Which of the	e following can be used to	
		ass of solute in terms of os			
	a) $M_2 = \left(\frac{m_2}{\pi}\right) VRT$		mone pressure.		
	b) $M_2 = \left(\frac{m_2}{V}\right) \frac{RT}{\pi}$				
	c) $M_2 = \left(\frac{m_2}{V}\right) \pi RT$				
	$M_2 = \left(\frac{m_2}{V}\right) \frac{\pi}{RT}$				
100		= volume of solution, π =			
406.	$9.8 \text{ g of H}_2\text{SO}_4$ is present in			D 0 02 M	
405	a) 0.05 M	b) 0.01 M	c) 0.03 M	d) 0.02 M	
407.		sion of 0.001 m, K_x [Fe(CN]	$_{6}$]is 7.10 × 10 ⁻³ K. If for wa	ater, κ_f is 1.86 K Kg mol $^-$,	
	value of x will be	1		D 4	
	a) 4	b) 3	c) 2	d) 1	
408.	Which of the following is r			D 01 - D - 1417	
	a) $\Delta V_{\text{mix}} = 0$	b) $\Delta H_{\text{mix}} = 0$	c) $\Delta S_{\text{mix}} = 0$	d) Obeys Raoult's law	
409.	What is molality of a solut		S 0		
	: = =	80) is dissolved in 500 g of		13.0	
	a) 1 m	b) 0.5 m	c) 0.2 m	d) 2 m	
410.			s -1.86° Cm $^{-1}$. If 5.00 g Na ate the van't Hoff factor for	$_{2}SO_{4}$ is dissolved in 45.0 g $Na_{2}SO_{4}$.	
	a) 0.381	b) 2.05	c) 2.63	d) 3.11	
411.			epared by dissolving 68.4 g	g of it per litre of the	
	solution, what is its osmot	tic pressure ($R = 0.082 La$	$tm K^{-1} mol^{-1}$) at 273 K?		
	a) 3.92 atm	b) 4.48 atm	c) 5.92 atm	d) 29.4 atm	
412.	A 5% solution of sugarcan	te (mol. wt. $= 342$) is isotor	nic with 1% solution of X u	nder similar conditions.	
	The molecular weight of X				
	a) 136.2	b) 689.4	c) 34.2	d) 171.2	
413.	During osmosis, flow of w	•			
		ipermeable membrane wit	th unequal flow rates		
	b) From solution having lo				
	c) From solution having h	•			
	•	ipermeable membrane wit	•		
414.	-		and that of 3.42% cane sugare of the resulting solution is		
	a) 0.82 atm	b) 2.46 atm	c) 1.64 atm	d) 4.10 atm	
415.	The solubility of a solid in	a liquid depends on :			
	a) Nature of solute	b) Nature of solvent	c) Temperature	d) All of these	
416.	On adding 1 g arsenic to 8 arsenic is	0 g benzene, the freezing p	oint of benzene is lowered	by 0.19°C . The formula of	
	a) As	b) <i>As</i> ₂	c) <i>As</i> ₃	d) <i>As</i> ₄	
417.		· -	ng freezing point depression		
		· · ·	· · · · · · · · · · · · · · · · · · ·		
_	DILIC EDUCATION M	VED. MANANAY COLLICEDIACATIA	ON ODC DUONE N	O. 0002042224 D a = a L 20	

PHONE NO: 8583042324 Page | **31**

	solution is 30. The appare	ent degree of dissociation o	f NaCl is	
	a) 0.60	b) 0.50	c) 0.30	d) 0.95
418	An aqueous solution of gl	ucose is 10% in strength. T	he volume in which 1 g-mo	ole of it is dissolved will be
	a) 0.18 L	b) 1.8 L	c) 0.9 L	d) 9.0 L
419	Relative lowering of vapo	ur pressure of a dilute solu	tion is 0.2. What is the mol	e fraction of the non-
	volatile solute?			
	a) 0.8	b) 0.5	c) 0.3	d) 0.2
420	The van't hoff factor for 0	$1 \text{ m Ba}(NO_3)_2 \text{ solution is } 2$	2.74. The degree of dissocia	ation is
	a) 91.3%	b) 87%	c) 100%	d) 74%
421	Which of the following co	ncentration term is/are ind	dependent of temperature?	
	a) Molarity		b) Molarity and mole frac	tion
	c) Mole fraction and mola	lity	d) Molality and normality	•
422	Which of the following so	lutions will have highest bo	oiling point	
	a) 0.1 M FeCl ₃		b) 0.1 M BaCl ₂	
	c) 0.1 M NaCl		d) 0.1 M urea (NH ₂ CONH	(2)
423	An aqueous solution of gl	ucose was prepared by diss	solving 18 g of glucose in 90	0 g of water. The relative
	lowering in vapour pressu	ure is		
	a) 0.01	b) 0.02	c) 1	d) 20
424	Molarity of a given orthor	phosphoric acid solution is	3 M. It's normality is	
	a) 9N	b) 0.3 N	c) 3 N	d) 1 N
425	A molar solution of NaCl l	nas a density of 1.21 g mL $^{-1}$	¹ . The molarity of this solut	tion is
	a) 2.35	b) 1.143	c) 2.95	d) 1.356
426	In a 0.2 molal aqueous so	lution of a weak acid H <i>X</i> , th	e degree of ionisation is 0.3	3 Taking k_f for water as
	1.85, the freezing point of	the solution will be neares	st to	
	a) MeV	b) Cal	c) Cm/s	d) Atm
427	A substance will be deliqu	iescent it its vapour pressu	re is :	
	a) Equal to the atmospher	ric pressure	ATTON	
	b) Equal to that of water v	vapour in the air	ATION .	
	c) Greater than that of wa	iter vapour in the air		
	d) Lesser than that of wat	-		
428	When an ideal binary sol	ution is in equilibrium with	n its vapour, molar ratio of	the two components in the
	solution and in the vapou	r phase is :		
	a) Same			
	b) Different			
		ne depending upon volatile	nature of the two compone	ents
	d) None of the above			
429	_	lvent having vapour pressu	ıre 0.80 atm vapour pressu	re reduces to 0.60 atm.
	Mole fraction of solute is			
	a) 0.25	b) 0.75	c) 0.50	d) 0.33
430		electrolyte are taken and if	all electrolytes are comple	tely dissociated, then
	whose boiling point will b	•		
	a) Glucose	b) KCl	c) BaCl ₂	d) $K_2[Fe(CN)_6]$
431				2 mole of urea dissolved in
	_	ce a lowering of temperatu		
	a) 0.186 °C	b) 0.372 °C	c) 1.86 °C	d) 3.72 °C
432		stributed between 10 cm ³		of molten lead at 8000°C.
		till left in the lead layer in a		
	a) Henry	b) Van't Hoff	c) Nernst's	d) Ostwald
433	. 0.1 molal aqueous solutio	n of NaBr freezes at -0.33!	5°C at atmospheric pressur	e k_f tor water is 1.86 °C.

WEB: WWW.GPLUSEDUCATION.ORG

GPLUS EDUCATION

	The percentage of dissociation of the salt in solution $% \left(x_{0}\right) =x_{0}^{2}$		
	a) 90 b) 80	c) 58	d) 98
434	50 g of an acid is dissolved in one litre aqueous so Acid left in aqueous layer when solution is shaken w		ient in favour of ether is 3
		c) 6.25 g	d) None of these
42E	a) $25 \mathrm{g}$ b) $12.5 \mathrm{g}$ You are given $100 \mathrm{mL}$ of $\mathrm{CCl_4}$ to extract iodine fi		
433		_	_
	maximum amount of iodine, which one of the following	ing processes would you us	e:
	a) Use all 100 mL of CCl ₄ at one time		
	b) Use 50 mL of CCl ₄ twice		
	c) Use 10 mL of CCl ₄ 10 times		
	d) Use 25 mL of CCl ₄ 4 times		. 2 -
436	A solution of protein (extracted from crabs) was pr		= = = = = = = = = = = = = = = = = = = =
	solution. At 4°C an osmotic pressure rise of 2.6 mm o		d. Then molecular weight of
	protein is: (Assume density of solution is 1.00 g/cm ²		
	a) 9.4×10^5 b) 5.4×10^5	c) 5.4×10^{10}	d) 9.4×10^{10}
437	Which of the following is incorrect?		
	a) Relative lowering of vapour pressure is independe	ent of the solute and the sol	vent.
	b) The relative lowering of vapour pressure is a colli	gative property.	
	c) Vapour pressure of a solution is lower than the va	pour pressure of the solver	nt.
	d) The relative lowering of vapour pressure is direct	ly proportional to the origi	nal pressure.
438	The average osmotic pressure of human blood is 7.8	bar at 37°C. What is the co	ncentration of an aqueous
	NaCl solution that could be used in the blood steam?		
	a) 0.16 mol/L b) 0.31 mol/L	c) 0.60 mol/L	d) 0.45 mol/L
439	For a dilute solution, Raoult's law states that		
	a) The lowering of vapour pressure is equal to mole	fraction of solute	
	b) The relative lowering of vapour pressure is equal		
	c) The relative lowering of vapour pressure is propo	rtional to the amount of so	lute in solution
	d) The vapour pressure of the solution is equal to the	e mole fraction of solvent	
440	The modal elevation constant of water is 0.52°C. The	boiling point of 1.0 modal	aqueous KCl solution
	(assuming complete dissociation of KCl), therefore, s	should be	
	a) 98.96°C b) 100.52°C	c) 101.04°C	d) 107.01°C
441	Calculate the molarity of 1 L solution of 93% H ₂ SO ₄ ((weight/volume). The dens	sity of the solution is 1.84
	g/mL	,	
	a) 11.05 b) 12.05	c) 13.05	d) 14.05
442	If 10^{-4} dm ³ of water is introduced into a 1.0 dm ³		
	vapour phase when equilibrium is established?	y	
	(Given : Vapour pressure of H ₂ O at 300 K is 3170 Pa	$R = 8314 \text{I K}^{-1} \text{mole}^{-1}$	
		c) $1.53 \times 10^{-2} \text{ mol}$	
443	Increasing the temperature of an aqueous solution w	•	uj 1,10 × 10 moi
773	a) Decrease in molarity	b) Decrease in molarity	
	c) Decrease in mole fraction	d) Decrease in % w/w	
1.1.1	How many grams of sulphuric acid is to be dissolved	•	e colution having
444	concentration of $[H_3O^+]$ ions 1 M at 25°C temperature		is solution having
	[$H = 1, O = 16, S = 32 \text{ g. mol}^{-1}$]	е.	
		a) 0.0a	4) 0 00°
445	a) 4.9g b) 19.6g	c) 9.8g	d) 0.98g
445	Equal masses of methane and oxygen are mixed in an	rempty container at 25°C.	The traction of the total
	pressure exerted by oxygen is	. 1	1
	a) $\frac{2}{3}$ b) $\frac{1}{3} \times \frac{273}{298}$	c) $\frac{1}{3}$	d) $\frac{1}{2}$
446	Which statement is wrong for distribution law?		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

	a) The two solvents sho	uld be mutually immiscible		
	b) The substance should	l not chemically react with a	any of the two solvents	
	c) The temperature sho	uld not change during expe	riment	
	=	the solute in both the solve		
447.	=	apour pressure is observed		
	a) 0.1 M glucose	b) 0.1 M Bacl ₂	c) 0.1 M MgSO ₄	d) 0.1 NaCl
448.	, ,	be added to $\frac{N}{2}$ HCl to prepar	, ,	•
		b) $100 \ cm^3$	c) $45 cm^3$	d) $400 \ cm^3$
4.40	a) $450 cm^3$		•	,
449.		nolar mass 342 g mol +) ha		ring 68.5 g sucrose in 1000 g Kkg mol ⁻¹)
	a) -0.372°C	b) -0.520°C	c) + 0.372° C	d) -0.570°C
450.	-	essure of isomolar solution		is
	a) $BaCl_2 > NaCl > sucros$		b) NaCl> $BaCl_2$ > sucros	
	c) Sucrose>NaCl> BaC		d) $BaCl_2$ >sucrose>NaC	
451	•	of 250 mL aqueous solutior	_	
TJ1 ,	a) 0.25 N	b) 0.50 N	c) 1 N	d) 2 N
452	•		•	•
452.		g point of a solution of 10 g	of solute (mol. wt. $= 100 \mathrm{g}$	of water is ΔI_b , the
	ebullioscopic constant o	of water is		A.T.
	a) 10	b) $100\Delta T_b$	c) ΔT_b	d) $\frac{\Delta T_b}{10}$
453.	The highest temperatur	e at which vapour pressure	of a liquid can be measured	l is:
	a) b.p. of liquid			
	b) Critical temperature	(Tc)	>	
	c) Critical solution temp		_	
	d) Inversion temperatur	The state of the s		
454.	-	n aqueous solution that con	stains 17.4 ppm of K_2SO_4 (1	$74 \ a \ mol^{-1}$)?
	a) $2 \times 10^{-2} M$	b) $2 \times 10^{-3} M$		d) $2 \times 10^{-4} M$
455	,	e 0.05 molal solution of non		a) 2 × 10
TJJ.	a) -0.093° C	b) 1.86°C	c) 0.93°C	d) 0.093°C
156	•		•	hase becomes same is called
TJ U.		cii vapoui pressure oi a sor	vent in its liquid and sond p	hase becomes same is called
	a) b. p.	b) f. p.	c) Krafft point	d) None of these
157				•
437.		pure liquid is 1.2 atm. When		o is mixed in A, then its
		es 0.6 atm. The mole fractio		1) 0.75
	a) 0.15	b) 0.25	c) 0.50	d) 0.75
458.	Isotonic solution have the			
	a) Normality	b) Density	c) Molar concentration	d) None of these
459.	Choose the correct state			
	When concentration of a	a salt solution is increased		
	a) Boiling point increase	es while vapour pressure de	ecreases.	
	b) Boiling point decreas	es while vapour pressure ir	icreases.	
	c) Freezing point decrea	ases while vapour pressure	increases.	
	d) Freezing point increa	ses while vapour pressure	decreases.	
460.		ntile solute is dissolved in 10		iling point by 1°C then
	=	olute is $(k_b \text{ for } C_6H_6 = 2.53)$	-	8 F "J
	a) 223 g	b) 233 g	c) 243 g	d) 253 g
461		, ,		nd sodium sulphate is in the
TU 1,	ratio :	or olo i in aqueous soiudoli	or area, sourain chioride di	na sourum surpnate is in the
	a) 1:1:1	b) 1:2:3	c) 1:2:4	d) 2:2:3

462. Azeotropic mixture are		
a) Constant temperature boiling mixture	b) Those which boils at c	lifferent temperatures
c) Mixture of two solids	d) None of the above	
463. When mercuric iodide is added to the aqueous solut	ion of potassium iodide, th	ie
a) Freezing point is raised	b) Freezing point is lowe	red
c) Freezing point does not change	d) Boiling point does not	change
464. Vapour pressure of a solvent containing non-volatile	e solute is :	
a) More than the vapour pressure of a solvent		
b) Less than the vapour pressure of solvent		
c) Equal to the vapour pressure of solvent		
d) None of the above		
465. 6.02×10^{20} molecules of urea are present in 100 m	al of its solution. The conce	entration of urea colution is
(Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$)	in of its solution. The conc	chiration of thea solution is
	-) 0.02 M	J) O 1 M
a) 0.001 M b) 0.01 M	c) 0.02 M	d) 0.1 M
466. In two solutions having different osmotic pressure,	the solution of higher osmo	otic pressure is called:
a) Isotonic solution		
b) Hypertonic solution		
c) Hypotonic solution		
d) None of these		
467. Sodium sulphate is soluble in water, while barium s	ulphate is sparingly soluble	e because :
a) The hydration energy of sodium sulphate is more	than its lattice energy	
b) The lattice energy of barium sulphate is less than	the hydration energy	
c) The lattice energy has no role to play in solubility		
d) The hydration energy of sodium sulphate is less t	han its lattice energy	
468. Which has minimum osmotic pressure?		
a) 200 mL of 2 M NaCl solution	b) 200 mL of 2 M glucose	esolution
c) 200 mL of 2 M urea solution	d) All have same osmotic	
469. Mole fraction (\mathcal{X}) of any solution is equal to		Procedure
no of moles of solute	no. of gram — equivale	ent of solute
a) volume of solution in litre	b) volume of solution	
no. of moles of solute	no. of moles of ar	
c) mass of solvent in kg	d) $\frac{1}{\text{total number of moles}}$	
470. The vapour pressure of benzene at 80°C is lowered		
in 78 g of benzene. The vapour pressure of pure be	-	_
substance will be:	inzene de 00 c is 750 mm.	The molecular weight of the
a) 15 b) 150	c) 1500	d) 148
	c) 1300	u) 140
471. The reverse of fusion is freezing and it is:		
a) Endothermic		
b) Exothermic		
c) Neither exothermic nor endothermic		
d) May be exothermic or endothermic		
472. 100 mL of 0.3 HCl is mixed with 200 mL of 0.6 N H_2 S	SO ₄ . The final normality of	the resulting solution will
be		
a) 0.3 N b) 0.2 N	c) 0.5 N	d) 0.1 N
473. Insulin $(C_2H_{10}O_5)_n$ is dissolved in a suitable solver		
concentrations C (g/cm ³) is measured at 20°C. the	slope of a plot of $\boldsymbol{\pi}$ again	st C is formed to be 4.65 \times
10^{-3} . The molecular weight of the insulin is :		
a) 4.8×10^5 b) 9×10^5	c) 3×10^5	d) 5.17×10^6
474. The melting point of most of the solid substances	increase with an increase	-

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 34

However, ice melts at a temperature lower than its usual melting point, when the pressure increase. This is because: a) Ice is less denser than water b) Pressure generates heat c) The bonds break under pressure d) Ice is not a true solid 475. The freezing point of water is depressed by 0.37°C in a 0.01 mol NaCl solution. The freezing point of 0.02 molal solution of urea is depressed by d) Hypertonic a) Hypotonic b) Isotonic c) Equimolar 476. The freezing point depression constant for water is 1.86 K kgmol⁻¹. If 45 g of ethylene glycol is mixed with 600 g of water, the freezing point of the solution is a) 2.2 K b) 270.95 K d) 275.35 K c) 273 K 477. A mixture of ethane and ethene occupies 41 L at 1 atm and 500 K, the mixture reacts completely with $\frac{10}{2}$ mole of O_2 to produce CO_2 and H_2O . The mole fraction of ethane and ethene in the mixture are $(R = 0.082L \text{ atm K}^{-1} \text{ mol}^{-1}) \text{ respectively}$ a) 0.50, 0.50 b) 0.75, 0.25 c) 0.67, 0.33 d) 0.25, 0.75 478. Which of the given solutions has highest osmotic pressure? a) 1*N* NaNO₃ b) 1*N* Ba(NO_3)₂ c) $1N \text{ Al}(NO_3)_3$ d) 1 N Th(NO_3)₄ 479. Molarity is expressed as c) Mol/1000 g a) L/mol b) Mol/L d) g/L480. At Abu mountains water boils at 96°C. What amount of NaCl be added in 1 kg water so that it boils at 100°C. K_h for $H_2O = 0.52$ K molality⁻¹ a) 225 g b) 450 g c) 200 g d) 125 g 481. Which one of the following is not correct for an ideal solution? a) It must obey Raoult's law b) $\triangle H = 0$ c) $\triangle V = 0$ d) $\triangle H = V \neq 0$ 482. For an ideal binary liquid solution with $P_A^0 > P_B^0$ which relation between X_A (mole fraction of A in liquid phase) and Y_A (mole fraction of A in vapour phase) is correct, X_B and Y_B are mole fraction of B in liquid and vapour phase respectively: a) $X_A = Y_A$ b) $X_A > Y_A$ d) X_A , Y_A , X_B and Y_B cannot be corelated 483. If P_0 and P_s are the vapour pressure of solvent and solution respectively and N_1 and N_2 are the mole of solute and solvent then: a) $(P_0 - P_s)/P_0 = N_1/(N_1 + N_2)$ b) $(P_0 - P_s)/P_s = N_1/N_2$ c) $P_s = P_0 \cdot N_2/(N_1 + N_2)$ d) All of the above 484. Distribution law cannot be applied for the system in which I_2 is distributed between: a) H₂O and CS₂ b) H₂O and CCl₄ c) H₂O and ether d) H₂O and ethanol 485. The process of getting fresh water from sea water is known as: a) Osmosis

GPLUS EDUCATION

b) Filtrationc) Diffusion

WEB: WWW.GPLUSEDUCATION.ORG

PHONE NO: 8583042324 Page | **35**

	d) Reverse osmosis					
486.	-		•	a 5% (wt. by vol.) solution of		
	a non-volatile solute. The	he molecular mass (in g mol	l^{-1}) of non-volatile solute i	s:		
	a) 350	b) 200	c) 250	d) 300		
487.	Osmotic pressure of a s	solution at a given temperat	ure			
	a) Increases with conce	entration	b) Decreases with conce	ntration		
	c) Remains same		d) Initially increases and	d then decreases		
488.	The osmotic pressure	of a solution at 0°C is 2 a	tm. What will be its osmo	tic pressure at 273°C under		
	similar conditions?					
	a) 0.5 atm	b) 2×273 atm	c) 4 atm	d) 273/2 atm		
489.	The ionic strength of so	olution containing 0,1 mol/k	kg of KCl and 0.2 mol/kg of	$Cu~SO_4$ is		
	a) 0.3	b) 0.6	c) 0.9	d) 0.2		
490.	Aqueous solution of 0	.004 M Na ₂ SO ₄ and 0.01	M glucose are isotonic. T	he degree of dissociation of		
	Na ₂ SO ₄ is:					
	a) 25%	b) 60%	c) 75%	d) 85%		
491.	How many grams of a s	sucrose (mol wt. = 342) sho	ould be dissolved in 100 g w	ater in order to produce a		
	solution with a 105.0°C	difference between the free	ezing point and boiling tem	perature? ($k_f =$		
	$1.86 \text{C/m}, k_b = 0.151 ^{\circ} \text{C}$	2)		,		
	a) 34.2 g	b) 72 g	c) 342 g	d) 460 g		
492.		istributed between two im	miscible solvents and rem	ains in the same state in the		
	solvent I, while, dissociates in the solvent II. If the concentration of solute are $c_{ m I}$ and $c_{ m II}$ in phase I and II					
	respectively then:					
	a) $\frac{c_{\rm I}}{c_{\rm II}(1-\alpha)} = K$	S. A.	2			
	$c_{\rm II}(1-\alpha)^{-R}$					
	b) $\frac{c_{\rm I}(1-\alpha)}{c_{\rm II}} = K$	7				
	c_{II}					
	c) $\frac{c_{\mathrm{I}}(1-\beta)}{}=K$	GPLUS EDU	CATION			
	c_{II}	OPLUS EDU	CATION			
	d) $\frac{c_1}{\sqrt{2}} = K$					
	$\sqrt{c_{\text{II}}(1-\alpha)}$					
493.				water and chloroform, the		
				hloroform 0.97 g litre ^{–1} . The		
		of lactic acid in favour of wa		12.45.55		
40.4	a) 50.55	b) 55.55	c) 60.55	d) 45.55		
494.	The molarity of pure w)	12.65.5		
	a) 55.6	b) 5.56	c) 6.55	d) 65.5		
495.		motic pressure is exhibited	by 0.1 M solution of			
	a) Decinormal aluminiu					
	b) Decinormal barium					
	c) Decinormal sodium					
	•	by mixing equal volumes of	• • • • • • • • • • • • • • • • • • • •			
496.				is isotonic with 2% aqueous		
		unknown solute. What is the				
	a) 60	b) 80	c) 72	d) 63		
497.	The atmospheric press					
	a) Pressure of the biom					
		atmospheric constituents				
		chemicals and vapour press	ure of volatiles			
	d) Pressure created on	to atmospheric molecules				

498. The energy that oppose	es the dissolution of a solute	in a solvent is called :	
a) Solvent energy			
b) Hydration energy			
c) Lattice energy			
d) Ionization energy			
499. In a mixture of A and B	; components show negative	deviation when	
a) A — B interaction is s	stronger than A — A and B — B	3 interaction	
b) A — B interaction is V	weaker than A — A and B — B	interaction	
c) $\triangle V_{mix} > 0, \triangle S_{mix} >$	> 0		
d) $\triangle V_{mix} = 0, \triangle S_{mix} >$	> 0		
500. On the basis of inter-	molecular forces predict th	ne correct order of decre	easing boiling points of the
compounds:			
	b) $CH_3OH > CH_4 > H_2$	c) $CH_4 > CH_3OH > H_2$	d) $H_2 > CH_4 > CH_3OH$
501. What is the molality of	pure water?		
a) 1	b) 18	c) 55.5	d) None of these
	re 'A' is 70 mm of Hg at 25°C		
	e vapour pressure of the sol	lution is 84 mm of Hg at 25	°C, the vapour pressure of
pure ' B ' at 25°C is			
a) 28 mm	b) 56 mm	c) 70 mm	d) 140 mm
503. The molality of a urea	solution in which 0.0100 g o	of urea, $[(NH_2O_2CO]$ is adde	d to $0.3000 dm^3$ of water at
STP is			
a) 0.555m	b) 5.55×10^{-4} m		d) 3.33×10^{-2} m
504. The elevation in boiling		of a solute in a solvent is o	called :
a) Cryoscopic constant	75000 0.007		
b) Boiling point constan			
c) Molal ebullioscopic	constant		
d) None of the above	Carrier EDIII	LACITAR	
505. Normality of 2 M sulph		LATION	
a) 2N	b) 4N	c) $\frac{N}{2}$	d) $\frac{N}{4}$
TOC The feeting with feet		4	7
506. The freezing point of or		ming Naci to be 100 % diss	ociated in water is (modal
depression constant=1	-	-) 2.7200	J) 2 720C
a) -2.72°C	b) -3.72°C	c) 2.72°C	d) 3.72°C
			$\mathrm{CCl_4}$ at 25°C. If solubility of $\mathrm{I_2}$
	litre ⁻¹ , the solubility of I_2 in		4) 2.C 0.E
a) 28.05	b) 30.05	c) 40.05	d) 26.05
508. Acetic acid on dissoluti			
a) Two times of its nor	-		
b) Its normal molecular	-		
c) Half of its normal mo	olecular weight		
d) None of the above	ivtures dinale dinale as the	major interaction is preser	atin.
509. Among the following m	= = =	major interaction is preser	IU III :
a) Benzene and ethanob) KCl and water	ı		
c) Acetonitrile and ace	tono		
·	tone		
d) Benzene and CCl ₄ 510. 5% (wt./vol.) aqueous	NaCl colution and 50% (set /s	vol) aqueous KCl colution a	ro :
a) Isotonic	b) Isomolar	c) Equinormal	d) None of these
	ion made by mixing 50 mL of		
orri inc molarity of a soluti	on made by mining Jo mil O	concinguos (so n) with s	o mili or water is

a) 9 m

b) 10 m

c) 11 m

d) 12 m

512. According to phase rule, if P = 3, C = 1, then F must be equal to :

b) 1

d) 4

513. At 95°C, an aqueous solution of iodine containing 0.0156 g/litre is in equilibrium with a CCl₄ solution containing 4.412 g/litre. If the solubility of I₂ in water at 95°C is 0.34 g/litre, then its solubility in CCl₄ is:

a) $\frac{4.412 \times 0.0156}{}$ 0.34

 $0.0156\,\times0.34$

4.412

 4.412×0.34

0.0156

514. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass $=60 \text{ gmol}^{-1}$) in the same solvent. If the densities of both the solutions are assumed to be equal to 1.0 g cm⁻³, molar mass of the substance will be

a) 90.0 g mol^{-1}

b) 115.0 g mol^{-1}

c) 105.0 g mol^{-1}

d) 210.0 g mol^{-1}

515. Which pair shows a contraction in volume on mixing along with evolution of heat?

a) $CHCl_3 + C_6H_6$

b) $H_2O + HCl$

c) $H_2O + HNO_3$

d) All of these

WEB: WWW.GPLUSEDUCATION.ORG